A profile of vaccination sentiments on online news, forums, Twitter, and other microblogs in South Africa

A mini-dissertation submitted by

Moreblessing Michelle Matsangaise

in partial fulfilment of the requirements for the degree of

Master of Pharmacy

in the

School of Pharmacy

at the

Sefako Makgatho Health Sciences University

Supervisor: Prof JC Meyer

Co-supervisor: Prof RJ Burnett

2018
DECLARATION

I declare that the mini-dissertation hereby submitted to the Sefako Makgatho Health Sciences University, for the degree of Master of Pharmacy, in the School of Pharmacy has not previously been submitted by me for a degree at this or any other university; that it is my work in design and execution, and that all material contained herein has been duly acknowledged.

____________________ 20 April 2019
Matsangaise MM (Ms) Date
DEDICATION

This dissertation is dedicated to my family who have been my pillar of strength throughout my studies.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iv
LIST OF TABLES .. v
LIST OF FIGURES ... vi
LIST OF APPENDICES .. vii
ABBREVIATIONS AND ACRONYMS .. viii
ABSTRACT .. ix

CHAPTER 1 INTRODUCTION .. 1
1.1 INTRODUCTION .. 1
1.2 BACKGROUND AND RATIONALE FOR THE STUDY ... 1
1.3 PROBLEM STATEMENT ... 3
1.4 RESEARCH QUESTION .. 3
1.5 AIM OF THE STUDY .. 3
1.6 OBJECTIVES OF THE STUDY ... 3
1.7 IMPORTANCE OF THE STUDY .. 4
1.8 OUTLINE OF THE DISSERTATION .. 4

CHAPTER 2 LITERATURE REVIEW .. 5
2.1 INTRODUCTION .. 5
2.2 VACCINATION UPTAKE, VACCINE SENTIMENTS AND THE MEDIA 5
2.3 SOCIAL MEDIA AS A DATA SOURCE FOR VACCINE CONVERSATIONS 6
2.3.1 Social media: Key definitions ... 6
2.3.2 Social media for research ... 6
2.3.3 Ethical implications of social media research ... 7
2.3.4 Bias in social media research ... 8
2.3.5 Vaccine content influencers on social media ... 8
2.4 ANTI-VACCINATION THEMES ON SOCIAL MEDIA ... 9
2.4.1 Vaccine safety ... 9
2.4.2 Vaccine effectiveness ... 9
2.4.3 Human rights issues ... 10

2.4.4 Religious beliefs ... 10
2.4.5 Conspiracy theories .. 11
2.5 SUMMARY ... 11

CHAPTER 3 METHODOLOGY .. 12

3.1 INTRODUCTION .. 12
3.2 STUDY DESIGN .. 12
3.3 STUDY POPULATION AND SAMPLE ... 12
 3.3.1 Target population ... 12
 3.3.2 Sample selection ... 12
3.4 DATA COLLECTION PROCESS AND INSTRUMENT 13
3.5 DATA ANALYSIS ... 14
 3.5.1 Classification of sentiments ... 14
 3.5.2 Frequency of the three vaccination sentiments over a period of 6 months ... 15
 3.5.3 Classification of vaccine content influencers 15
 3.5.4 Vaccination themes ... 15
3.6 TRUSTWORTHINESS ... 16
 3.6.1 Dependability ... 16
 3.6.2 Credibility .. 17
 3.6.3 Confirmability ... 17
 3.6.4 Transferability ... 17
3.7 ETHICAL CONSIDERATIONS ... 18
3.8 SUMMARY .. 18

CHAPTER 4 RESULTS AND DISCUSSION ... 19

4.1 INTRODUCTION .. 19
4.2 MANUSCRIPT 1 .. 19
 4.2.1 Manuscript 1: Letter to the editor .. 19
 4.2.2 Manuscript 1 for publication .. 21
4.3 Manuscript 2 ... 36
 4.3.1 Manuscript 2: Letter to the editor .. 36
 4.3.2 Manuscript 2 for publication .. 38
CHAPTER 5 LIMITATIONS, RECOMMENDATIONS AND CONCLUSIONS.................. 51

5.1 INTRODUCTION... 51
5.2 LIMITATIONS OF THE STUDY.. 51
5.3 RECOMMENDATIONS ... 51
5.4 CONCLUSIONS ... 52

REFERENCES .. 53

APPENDICES .. 63
ACKNOWLEDGEMENTS

I would like to acknowledge the following people for their various contributions to the study:

- My supervisor, Prof Hannelie Meyer for all her dedication and support throughout the whole project. Thank you for going the extra mile to make this a success.

- My co-supervisor, Prof Rose Burnett whose expertise and knowledge I am forever grateful for. Thank you for all your patience throughout this learning process.

- Mr Neil Burnett for assisting with Pulsar® software and sentiment assignment.

- The National Research Foundation (NRF) for funding the research and part of my tuition fees.

- The School of Pharmacy at Sefako Makgatho Health Sciences University for providing the needed academic and logistical support during the course of my studies.

- My family for being the pillar of strength and the fuel behind my hard work.
LIST OF TABLES

Manuscript 1

<table>
<thead>
<tr>
<th>Table 1:</th>
<th>Frequencies of vaccine sentiments on Twitter, online news platforms, forums and microblogs with example posts.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>... 27</td>
</tr>
<tr>
<td>Table 2:</td>
<td>Top 10 negative vaccine influencers’ visibility according to scores.</td>
</tr>
<tr>
<td></td>
<td>... 27</td>
</tr>
<tr>
<td>Table 3:</td>
<td>Top 10 negative vaccine influencers’ impressions according to scores.</td>
</tr>
<tr>
<td></td>
<td>... 28</td>
</tr>
<tr>
<td>Table 4:</td>
<td>Top 10 positive vaccine influencers’ visibility according to scores.</td>
</tr>
<tr>
<td></td>
<td>... 29</td>
</tr>
<tr>
<td>Table 5:</td>
<td>Top 10 positive influencers’ impressions by scores.</td>
</tr>
<tr>
<td></td>
<td>... 30</td>
</tr>
</tbody>
</table>

Manuscript 2

<table>
<thead>
<tr>
<th>Table 1:</th>
<th>Anti-vaccination themes and examples of posts.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.. 43</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 3.1: Screenshots from Pulsar® software showing negative vaccine conversations..14

Figure 3.2: Example from NVivo®12 showing text coded into nodes ..16
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>SMUREC ethical clearance certificate</td>
<td>63</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Vaccine author guidelines</td>
<td>64</td>
</tr>
</tbody>
</table>
ABBREVIATIONS AND ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDC</td>
<td>Centres for Disease Control</td>
</tr>
<tr>
<td>EPI</td>
<td>Expanded Programme on Immunisation</td>
</tr>
<tr>
<td>HepB</td>
<td>Hepatitis B vaccine</td>
</tr>
<tr>
<td>HPV</td>
<td>Human papillomavirus</td>
</tr>
<tr>
<td>MMR</td>
<td>Measles, mumps rubella vaccine</td>
</tr>
<tr>
<td>MPharm</td>
<td>Master of Pharmacy</td>
</tr>
<tr>
<td>NDoH</td>
<td>National Department of Health</td>
</tr>
<tr>
<td>NICD</td>
<td>National Institute for Communicable Diseases</td>
</tr>
<tr>
<td>NRF</td>
<td>National Research Foundation</td>
</tr>
<tr>
<td>SAMA</td>
<td>South African Medical Association</td>
</tr>
<tr>
<td>SAVIC</td>
<td>South African Vaccination and Immunisation Centre</td>
</tr>
<tr>
<td>SMUREC</td>
<td>Sefako Makgatho University Research Ethics Committee</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
ABSTRACT

Introduction: Although vaccination is recognised as one of the most cost-effective public health interventions, outbreaks of vaccine preventable diseases in South Africa have made it apparent that vaccines are not reaching all. Evidence of anti-vaccination lobbying on the South African internet in a previous study further raised concerns and a probe to determine anti-vaccination sentiments on South African social media became necessary. This was especially necessitated and motivated by global studies which have demonstrated the correlation between vaccine sentiments on social media and a decline or rise in vaccine uptake. As a result, the South African Vaccination and Immunisation Centre began a social media tracking project in June 2016, to analyse sentiment on vaccination-related posts. Baseline results of the first 6 months of tracking found that 18% of posts were anti-vaccination. This study reports on the second 6 months of the project.

Objectives: The objectives of the study were to i) identify and classify sentiments towards human vaccination generated from online news, forums, Twitter and other microblog platforms in South Africa over a period of 6 months as positive, negative or neutral; ii) determine the frequency of the three vaccination sentiments over a period of 6 months; iii) identify and classify the main influencers of vaccine content; and iv) identify and describe anti-vaccination themes.

Method: A descriptive qualitative study, using content analysis of online vaccination conversations on Twitter, microblogs, forums and online news platforms was conducted. The study also incorporated a quantitative approach to determine the frequency of the classified sentiments. Vaccination-related social media posts were identified by Pulsar® software for the period December 2016 to May 2017. Data were coded into positive, neutral or negative sentiments and quantified by Pulsar® software. Conversations classified as negative were then imported into NVivo®12 software and open-coding was used to develop a framework of categories and themes. Ethical clearance for the study was obtained from Sefako Makgatho University Research Ethics Committee.

Results: A total of 11 111 conversations were identified, of which 16.5% were anti-vaccination. Twitter emerged as the biggest source of vaccine-related posts, with tweets making up 83% of all posts. After determining the top 10 influencers of negative vaccine content by visibility score as well as by impression score, a permaculture expert recorded the highest visibility score, while a news agent emerged with the largest impression score. Common anti-vaccination themes included the following: the conspiracy theory that Big
Pharma develops vaccines for financial gain; the theory linking vaccines to autism; issues surrounding safety of vaccines and vaccine ingredients; and concerns about the effectiveness of vaccines.

Conclusions: Anti-vaccination sentiments on South African social media platforms present a serious cause for concern. Themes identified provide further valuable information that can be used by the South Africa National Department of Health to develop targeted messages about vaccine safety. The data from global studies showing correlation between negative sentiments possibly influencing the decision not to vaccinate make it especially important to address this growing phenomenon. Targeted interventions addressing a social media audience are therefore paramount. The viral nature of the internet makes these interventions especially urgent.

Recommendations: Ongoing surveillance of the South African social media landscape is encouraged, and studies investigating the impact of anti-vaccination conversations in the South African context are recommended. A large social media presence and visibility of public health groups debunking vaccination myths and answering public concerns is therefore necessary.
Chapter 1: Introduction

CHAPTER 1
INTRODUCTION

1.1 INTRODUCTION

This chapter outlines the background and motivation for the study and briefly gives the rationale for the study. A description of the problem statement is provided, which is followed by the aims and objectives of the study. The importance of the study is given and the chapter is concluded with an outline of how the dissertation is presented.

1.2 BACKGROUND AND RATIONALE FOR THE STUDY

Vaccination is recognised as a key intervention for preventing infectious diseases, thereby reducing the need for antibiotics which in turn reduces antimicrobial resistance. Each year vaccination saves millions of lives and has successfully eradicated smallpox, which in the past claimed over 5 million lives annually (Henderson, 2011). In addition, vaccination remains the most cost-effective way of preventing vaccine-preventable diseases (Ozawa, Clark, Portnoy et al., 2017). South Africa has achieved significant successes through its Expanded Programme on Immunisation (EPI-SA), including being declared free of wild poliovirus transmission by the Africa Region Certification Commission in 2006 (World Health Organization [WHO], 2015). The EPI-SA currently provides free universal infant vaccination against disseminated tuberculosis, polio, diphtheria, pertussis, tetanus, Haemophilus influenzae type b (Hib) disease, hepatitis B, rotavirus diarrhoea, pneumococcal disease and measles (Dlamini & Maja, 2017). In addition, the human papillomavirus (HPV) vaccine against cervical cancer is provided to public sector girls from the age of nine (Dlamini & Maja, 2016; Bruni, Barrionuevo-Rosas, Albero et al., 2017).

Although EPI-SA has gone to great lengths to improve access to adequate infant immunisation (Dlamini & Maja, 2016), outbreaks of vaccine-preventable diseases continue to occur. For example, cases of measles and diphtheria have been reported in South Africa in the past number of years (Siegfried, Wiysonge & Pienaar, 2010; Mahomed, Archary, Mutevedzi et al., 2017; National Institute for Communicable Diseases [NICD], 2017a; NICD, 2017b). Measles cases were reported in eight provinces of the country in 2017 and as a result it has become increasingly obvious that infant vaccines are not reaching all intended areas and people (NICD, 2017). This supposition is supported by South Africa’s 2016 Demographic and Health Survey, which reported that only 53% of children aged 12 to 23 months had received all their
age appropriate vaccines in their first year of life (National Department of Health [NDoH], Statistics South Africa, South African Medical Research Council & ICF, 2017).

Although significant strides in HPV vaccination coverage have been made since its introduction in 2014 (NDoH, 2014), limited access and uptake has been observed (Bruni et al., 2017). The 2015/2016 NDoH annual report showed a low uptake of the 2nd dose of the HPV vaccine (63\%), which was below the targeted 80\% coverage (NDoH, 2017). Also noteworthy, is the sub-optimal coverage of the hepatitis B vaccine (HepB) amongst healthcare workers (Makwakwa, Fernandes, Francois et al., 2014; Sondlane, Mawela, Razwiendani et al., 2016). For example, only 15.4\% of healthcare workers were reported to have received all three doses of HepB in a study done at Chris Hani Baragwanath Hospital in Johannesburg (Makwakwa et al., 2014).

Reasons for low vaccination coverage range from a lack of confidence in vaccines to limited access to basic health-care in some communities (Salmon, Dudley, Glanz & Omer, 2015). Factors related to vaccination coverage include amongst others, socio-economic status and religion (Larson, Jarrett, Eckersberger et al., 2014). In middle and high income countries, there is better internet access than in lower income countries, which therefore plays a significant role in dissemination of vaccine information and misinformation, shaping sentiment and ultimately the decision on whether or not to vaccinate. Vaccination hesitancy fuelled by the emergence of anti-vaccination lobbying, is a growing phenomenon on social media platforms in high income countries (Dubé, Gagnon, Ouakki et al., 2016; Ward & Peretti-Watel, 2016). Vaccination hesitancy is defined as a lack of willingness to vaccinate despite vaccination services being available and may include a partial willingness to vaccinate versus complete refusal or acceptance of some vaccines and refusal of others (WHO, 2014). Vaccine hesitancy focuses mainly on the indecision to accept or deny vaccines and many factors such as context, time and specific vaccine influencing the decision (WHO, 2014). Evidence from recent studies in South Africa shows the increasing presence of anti-vaccination lobbying on the South African internet (Baker, 2015; Burnett, von Gogh, Moloi et al., 2015). However, there is a paucity of scientific literature about the influence that social media-based anti-vaccination lobbying has on vaccination uptake in South Africa.

Because of internet-based anti-vaccination lobbying on South African webpages, in 2016, the South African Vaccination and Immunisation Centre (SAVIC) started a project using software that tracks vaccination conversations on social media networks including online news, forums, Twitter and other microblog platforms. The search algorithm and sentiment allocation
methodology were piloted from June to November 2016, rendering the software ready to be used for tracking South African vaccination conversations on social media.

1.3 PROBLEM STATEMENT

Infant vaccination coverage in South Africa has been shown to be far below the targets set by the WHO and the NDoH, resulting in outbreaks of vaccine-preventable diseases which are targeted by EPI-SA. The contribution of internet-based anti-vaccination lobbying to the low vaccination coverage has not been established. Vaccination sentiments on social media may contribute to shaping the extent of vaccine uptake by members of the public who use social media. However, there are no published data from South Africa on the perceptions of social media users towards vaccination.

1.4 RESEARCH QUESTION

What is the profile of sentiments towards human vaccination expressed on South African online news, forums, Twitter and other microblogs?

1.5 AIM OF THE STUDY

To profile sentiments on human vaccination expressed on online news, forums, Twitter and other microblogs in South Africa.

1.6 OBJECTIVES OF THE STUDY

The objectives of the study were as follows:

- To identify and classify sentiments towards human vaccination generated from online news, forums, Twitter and other microblog platforms in South Africa over a period of 6 months as positive, negative or neutral.
- To determine the frequency of the three vaccination sentiments over a period of 6 months.
- To identify and classify the main influencers of vaccine content on online news, forums, Twitter and other microblogs.
- To identify and describe anti-vaccination themes mentioned on online news, forums, Twitter and other microblogs.
Chapter 1: Introduction

1.7 IMPORTANCE OF THE STUDY

This study provides data that are essential for understanding public sentiment towards human vaccination in South Africa. Being confined to that sector of the South African public utilising social media, it provides invaluable insights into how information or misinformation on the internet shapes online conversations about vaccination. Evidence of the impact of anti-vaccination lobbying on vaccine uptake in high income countries makes it imperative that South African researchers embark on studies to investigate the trends in human vaccination-related online conversations. The already evident infiltration of anti-vaccination lobbying on the South African internet makes this a matter of urgency as the statistics have demonstrated a large and growing social media use and a reliance on social media for information.

The results of the study will assist in designing interventions aimed at increasing awareness of the benefits of vaccination in the social media sphere with the aim of improving vaccination uptake.

1.8 OUTLINE OF THE DISSERTATION

Chapter 1 provides an overview of the dissertation and covers the background and rationale of the study, as well as the problem statement, aim and objectives.

Chapter 2 contains the literature review on the topic investigated.

Chapter 3 provides a detailed account of the methodology of the study.

Chapter 4 contains the two manuscripts that will be submitted for publication in peer reviewed journals. As a requirement for the MPharm degree, MPharm dissertations do not have separate chapters dedicated to results and discussion. The results of the study and the discussion thereof are presented within the two manuscripts.

Chapter 5 includes the limitations of the study, recommendations and a brief conclusion.
CHAPTER 2
LITERATURE REVIEW

2.1 INTRODUCTION

This chapter explores the literature that was used to support the objectives of the study, outlined as sections and subsections. Section 2.2 gives details about vaccination uptake, sentiments and the media. Section 2.3 gives an extensive description of social media as a data source for vaccine conversations. Subsection 2.3.1 is a review of social media for research purposes and 2.3.2 describes the ethical implications in social media research. Subsection 2.3.3 investigates literature on the role that influencers have in promoting health-related information in general as well as vaccine content. The chapter is concluded with Section 2.4, in which anti-vaccination myths and themes are discussed.

2.2 VACCINATION UPTAKE, VACCINE SENTIMENTS AND THE MEDIA

Vaccine sentiments reaching the general public through mass media have been observed to have an impact on the uptake of vaccines. Previous studies have shown a correlation between a surge in vaccine conversations in the media and a decline/increase in uptake (Smith, Ellenberg, Bell et al., 2008; Salathé & Khandelwal, 2011). For example, in a study to determine the impact of media coverage of the measles mumps and rubella vaccine (MMR)-autism controversy, a decrease in MMR coverage was observed following the media publications (Smith et al., 2008). Similarly, a strong correlation was observed between sentiments expressed on Twitter towards a newly introduced influenza vaccine and Centre for Disease Control (CDC)-estimated vaccination rates in the United States (Salathé & Khandelwal, 2011). The impact of the media on vaccination was also demonstrated when Japan suspended its HPV vaccine recommendation following online media outcry about the perceived HPV vaccine adverse effects (Larson, Wilson, Hanley et al., 2014).

Vaccine sentiments may be categorised as positive, neutral or negative based on the tone or nuance gathered from the posts (Salathe et al., 2011; Larson, Smith, Paterson et al., 2013). Conversations or posts expressing concerns about adverse effects following immunisation or any form of vaccination hesitancy towards the immunisation programme, would be classified as negative sentiment (Larson et al., 2013). Positive or neutral sentiments are those conversations which lack an indication of concern about vaccines or the vaccination programme (Becker, Larson, Bonhoeffer et al., 2016; Keim-Malpass,
Mitchell, Sun et al., 2017). Some studies have classified conversations as either pro-vaccination, anti-vaccination or neutral (Guidry, Carlyle, Messner et al., 2015). Understanding the different sentiments that the public share about vaccines will help shape interventions tailor-made for a social media audience.

2.3 SOCIAL MEDIA AS A DATA SOURCE FOR VACCINE CONVERSATIONS

2.3.1 Social media: Key definitions

Social media is defined as websites or applications where people can communicate and exchange information (Oxford, 2017). Examples of such applications include Facebook, Twitter, Instagram, Pinterest and YouTube amongst a wide array of sites. Twitter is one of the fastest growing social media platforms. In 2019, it was recognised as the second largest influential social network in South Africa (ORNICO, 2019). Conversations on Twitter are known as tweets. Tweets may further be classified into ‘posts’ and ‘engagements’. ‘Posts’ refer to the user’s own opinions, whereas ‘engagements’ refer to the user’s reaction to another post in the form of a ‘like’ or a ‘retweet’ (Twitter, 2018). For the purposes of this study the term ‘posts’ will be used to refer to tweets, posts and engagements from the social media platforms investigated in this study.

Microblogs are social media sites that allow the user to post very short entries or content in the form of a picture or text (Merriam-Webster, 2017). Examples of microblogs include Twitter, Tumblr and Friendfeed. Other social networks such as Facebook have a microblogging feature which is referred to as a ‘status update’. Conversations on microblogs are known as ‘posts’.

Online news platforms are electronic news blogs which replace or often supplement the traditional paper-based newspapers. A survey done in August 2017 in the United States showed that 68% of adults obtained their news from social media (Horrigan, 2018). Although South Africans primarily rely on television as a news source, the rate of online news uptake is double that of print and radio (Effective Measure, 2017).

2.3.2 Social media for research

Researchers have started utilising social media as a data source for exploring public awareness about health matters (Gough, Hunter, Ajao et al., 2017). Electronic media gives real time access to public opinions on issues surrounding their beliefs and opinions (Dredze, Broniatowski, Smith et al., 2016). Online research cuts across demographics and allows the
Chapter 2: Literature Review

perspectives of different social groups to be explored (Dredze et al., 2016). There is growing evidence of a reliance by the public on the internet for health information (Hesse, Moser & Rutten, 2010; Lehmann, Ruiter & Kok, 2013) and a tendency to express their perceptions on social networks. An internet survey conducted on American adults showed that the internet was the second most trusted source of health information and the first point of enquiry for health-related information (Hesse et al., 2010).

Together with selected microblogs, Twitter presents a large pool of information from which researchers can gather trends and sentiments from the public about a specific subject. Twitter has in the past been used to understand the public’s perception of the HPV vaccine (Keim-Malpass et al., 2017). A previous study has utilised social media to track the geographical spread of vaccine conversations by developing a ‘rumour surveillance’ for early detection of vaccine content (Larson et al., 2013). In a similar fashion, Twitter has been used as a surveillance system during an influenza outbreak to track and investigate the correlation between Twitter mentions and influenza prevalence (Broniatowski, Paul, Dredze et al., 2013). Other social media platforms such as Pinterest, have also been used to gain an understanding of how vaccines are portrayed on the platform (Guidry et al., 2015).

2.3.3 Ethical implications of social media research

Social media is a relatively new source of research data and hence comes with its own challenges. The legal environment surrounding internet research is still ambiguous. Posts that are publicly available on social media are deemed exempt from requiring consent (Rivers & Lewis, 2014; Wenner, 2014; Twitter, 2018). Conflicting information exits on social media ethics and it is difficult to strike a balance between conventional research ethics and the relatively less stringent internet ethics (Buchanan & Zimmer, 2018). Twitter’s privacy policy puts no restriction of access to usernames, known as Twitter handles, and this permits the use of the usernames by third parties for marketing or research (Twitter, 2018). Provision is made for those who would like to maintain their privacy or do not want their information collected to ‘lock’ their accounts or use pseudonyms instead of their real names (Twitter, 2018). On the other hand, Facebook updated its privacy policy to add restriction of open access to user information for unauthorised parties and therefore posts are not in the public domain, hampering research on the site (Facebook, 2018).

Although these ethical dynamics exist across social media platforms, ethical bodies seem to agree that some basic research ethics need also be applied to social media as with conventional research methods (South African Medical Association [SAMA], 2015;
Chapter 2: Literature Review

Buchanan & Zimmer, 2018). In the United States, research ethics stipulate that there should not be ‘linkability’ of research data and that any personal identifiable information should be removed or have its access restricted (Buchanan & Zimmer, 2018). Similarly, the South African Medical Association in its social media ethics guideline recommends that patient confidentiality should be maintained in all medical practitioners’ social media interactions (SAMA, 2015).

2.3.4 Bias in social media research

A limitation of social media, for the purpose of research, is that conclusions for a larger population cannot be drawn just from electronic platforms, as they exclude the portion of the population who are not sufficiently comfortable with technology as well as those who do not have access to an internet infrastructure (Gustafson & Woodworth, 2014). The information gathered does however give an idea of the general trends in conversations in the social media sphere and will enable interventions to be made specifically for those who may be influenced by anti-vaccination content shared on social media.

2.3.5 Vaccine content influencers on social media

Several public health organisations such as the WHO, United Nations Children’s Fund and National Departments of Health are among influential entities harnessing the power of social media in disseminating important vaccination messages. These large organisations capitalise on their relatively extensive social media following and therefore are capable of increasing direct engagement with the public (Heldman, Weaver & Schindelar, 2013). Other influencers include independent social media users who may or may not be affiliated to a public health organisation, are healthcare workers or lay people with a large social media following (Househ, 2016; Gough et al., 2017). In addition, online news agents have been observed to make great impressions and are often the most shared or reposted and referenced source of vaccine information on social media (Becker et al., 2016). Influencers with an extensive following, pushing anti-vaccination content on social media platforms increase the likelihood of a reduction in vaccine confidence amongst the audiences in their virtual space (Heldman et al., 2013). Identifying health influencers on social media gives rise to potential partnerships between positive influencers and public health organisations, for the purposes of designing important health advocacy strategies, including interventions for increasing vaccination uptake (Heldman et al., 2013; Gough et al., 2017).
2.4 ANTI-VACCINATION THEMES ON SOCIAL MEDIA

The conversational landscape in other studies revealed the infiltration of anti-vaccination lobbying on electronic media platforms (Becker et al., 2016; Burnett et al., 2015; Hickler, Guirguis & Obregon, 2015). Several beliefs propagated by anti-vaccination lobbyists pertaining to vaccines and the vaccination programme, are shared on social media by anti-vaccination lobbyists and vaccine hesitant parents. Some of the common anti-vaccination themes encountered on the internet and social media include concerns about vaccine safety, vaccine effectiveness, human rights issues around consent, religious beliefs and conspiracy theories involving pharmaceutical companies and the government (Healy, 2014; Guidry et al., 2015).

2.4.1 Vaccine safety

Fears that vaccines are not safe have been around since the invention of the first vaccine against smallpox (Porter & Porter, 1988; Wolfe & Sharp, 2002). However, it was the 1998 report in The Lancet by Wakefield et al., suggesting a link between the MMR and autism that gave rise to modern anti-vaccination lobbying, which was primarily focused on the myth that vaccines are not safe (Wakefield, Murch, Anthony et al., 1998). Since the advent of social media, this myth has been a dominant and recurring theme, with studies reporting on varying safety related claims being made on social media, ranging from a lack of confidence in vaccine ingredients to concerns about vaccine adverse effects as well as a belief that vaccines have the potential to cause disease (Lehmann et al., 2013; Guidry et al., 2015). Recurring mentions of vaccine ‘additives’ such as mercury and aluminum are also common amongst anti-vaccination posts (Kang, Ewing-Nelson, Mackey et al., 2017). These are often linked to the emergence of autism and other idiopathic diseases in vaccinated children. Vaccine hesitant social media users also cite their fear of developing vaccine related adverse events to explain their lack of enthusiasm towards vaccines. A study of YouTube videos related to immunisations showed that vaccines were perceived to cause a range of serious adverse events including neurological injury and some form of permanent injury (Keelan, Pavri-Garcia, Tomlinson et al., 2007)

2.4.2 Vaccine effectiveness

Vaccine effectiveness has also been questioned by vaccine hesitant parents who have been exposed to anti-vaccination misinformation, with sentiments ranging from a complete lack of confidence to partial acceptance (Guidry et al., 2015). Some vaccine hesitant social media users were found to believe that vaccines increase susceptibility to the diseases
against which one is vaccinated (Guidry et al., 2015; Lehman et al., 2013). Others questioned why it was possible to still contract the disease against which one is vaccinated. This was demonstrated in a study that tracked the coverage of influenza vaccine, where people questioned why it was necessary to get the vaccine if one could still contract influenza regardless of one’s vaccination status (Lehmann et al., 2013). Furthermore, to support the vaccine ineffectiveness claim, anti-vaccination conversations often recommend alternative therapies such as vitamin C and D supplementation for influenza and lifestyle adjustments in place of vaccines, with these practices being credited for the decline in vaccine preventable diseases (Lehmann et al., 2013). Others are of the belief that vaccines are not ‘natural’ and that complementary medicines are more effective than vaccines for preventing disease (Shapiro, Surian, Dunn et al., 2017).

2.4.3 Human rights issues

Anti-vaccination sentiments on social media have also been characterised by the questioning the perceived breech of human rights through ‘mandatory vaccination’ in countries were childhood vaccines are regarded as legally compulsory (Guidry et al., 2015). Parents expressed concern at the ‘lack of respect’ for their decision to have their children abstain from vaccines as they held the belief that they were the ‘experts’ of their own children (Kata, 2012). Others were of the view that mandatory vaccines were an expression of the government’s excessive control and felt that this was therefore a violation of civil liberties (Guidry et al., 2015; Shapiro et al., 2017). Concerns about the girls-only mandate of the HPV vaccine were also expressed and questions about who should be the decision maker when it comes to HPV vaccination were also observed (Shapiro et al., 2017).

2.4.4 Religious beliefs

While religion-based anti-vaccination sentiment expressed on the internet has been documented to have an influence on vaccine perceptions and may ultimately have an impact on vaccine uptake (Burnett et al., 2012; Grabenstein, 2013), very few social media studies have identified religious beliefs as a theme related to vaccine hesitancy. A study of parenting blogs observed a relationship between religious affiliation and vaccine exemptions, with parents relying on their faith teachings to inform their decision to vaccinate or not (Tangherlini, Roychowdhury, Glenn et al., 2016). Findings from a study on Twitter regarding the HPV vaccine showed conflicting sentiments towards the vaccine which was perceived to be contrary to some religious principles which advocated for abstinence as a way of preventing HPV infection (Shapiro et al., 2017).
2.4.5 **Conspiracy theories**

Negative sentiments around vaccination often stem from a lack of trust in health governing boards as well as the government (Lehmann *et al.*, 2013; Blankenship, Goff, Yin *et al.*, 2018; Kang, Ewing-Nelson & Mackey *et al.*, 2017). Anti-vaccination lobbyists also often make reference to the perceived financial benefit that Big Pharma and organisations such as the CDC stand to gain from the vaccination programme (Kang *et al.*, 2017).

2.5 **SUMMARY**

Vaccination sentiments shared across social media platforms have been classified as either positive, neutral or negative as well as either pro- or anti- vaccination. Evidence in literature has shown the ability of social media for quick dissemination of vaccine content and how the coverage of such has in the past resulted in reduced or increased vaccine uptake. Social media thus presents researchers with a large platform which cuts across demographics and from which different perspectives can be explored. However, the ethical environment for social media research is still unclear but basic research ethics aimed at protecting subjects are recommended.

Vaccine content influencers are individuals or organisations usually with a large following or reach who are key-drivers of vaccine content on social media. These include both positive and negative influencers and a study of both assists in developing targeted interventions towards vaccine advocacy.

Varying vaccine themes have been identified on social media from previous studies and these include: vaccine safety theme were the safety of vaccines and their ingredients is questioned; vaccine effectiveness where others doubt the efficacy of vaccines; human rights where others cite a lack of respect for civil liberties as far as mandatory vaccines are concerned and the religious beliefs theme which demonstrates how religion has in past studies influenced parents stance on vaccination.

The following chapter will provide details on the methodology of the study.
3.1 INTRODUCTION

This chapter describes the methodology for the study with details about the study design, population and sample selection discussed in Sections 3.2 and 3.3 respectively. A description of the data collection process and instruments is provided in Section 3.4. Section 3.5 explains the data analysis methods for the qualitative and quantitative data in detail. Methods used to ensure the trustworthiness of the study are discussed in Section 3.5.4. The chapter is concluded with Section 3.7, describing the ethical considerations for the study.

3.2 STUDY DESIGN

Firstly, this was a descriptive qualitative study, using content analysis of online vaccination conversations on Twitter, microblogs, forums and online news platforms.

Secondly, the study also incorporated a quantitative approach to determine the frequency of the classified sentiments.

3.3 STUDY POPULATION AND SAMPLE

3.3.1 Target population

The study population included all publicly available South African posts on Twitter, microblogs, forums and online news platforms which contained at least one of the terms from the Boolean search (see Section 3.3.2) over a 6-month period. Only posts originating from publically available South African Internet Protocol addresses were utilised. Users with a Virtual Private Network were not included.

3.3.2 Sample selection

All posts from the selected electronic platforms, for the period December 2016 to May 2017 were selected for analysis.

The following inclusion criteria were applied:

- All posts from Twitter, forums, microblogs and online news platforms which made reference to human vaccination, that contained at least one of the following search terms:
Chapter 3: Methodology

Vaccination, vaccinate, vaccine, vaccinations, vaccinates, vaccines, vaccinated, #vaccination, #vaccinate, #vaccine, #vaccinations, #vaccinates, #vaccines, , #vaccinated, inenting, entstof, entstowwe, inentings, ingeënt, #ingeënt, #inenting, #entstof, #entstowwe, #inentings

The following exclusion criteria were applied:

- Posts that made reference to animal vaccination
- Posts outside South Africa

3.4 DATA COLLECTION PROCESS AND INSTRUMENT

Retrospective data were collected from online news sites, forums, Twitter and microblogs for a period of 6 months (December 2016 to May 2017) using Pulsar® software.

Pulsar® software is utilised in market and science research. Pulsar® uses an algorithm to collect and summarise data. This enables collection of vast quantities of data in an instant and increases access to information for research and/or marketing purposes. The software allows for the following data to be aggregated: Conversation volume over time; trending themes; top locations discussing topics; heat map depicting the story’s penetration around South Africa; top influencers and engagers.

The programme allows for retrospective and prospective tracking of conversations and therefore enables continuous follow-up of conversations. The impact of an intervention, for example, can continuously be traced for years after its inception. SAVIC secured a license for Pulsar® as part of a National Research Foundation (NRF) grant for the purposes of conducting online research.

In this study, an online Boolean search of vaccine related key words was generated and built into the programme. Search terms were limited to English and Afrikaans only, two of the eleven official languages in South Africa, since during piloting using the other languages yielded no results. Filter and keywords (see Section 3.3.2) were inserted into the search interface to extract only relevant conversation on human vaccination. Posts from the search results often contained hyperlinks to other websites in which some of the search terms were mentioned. These hyperlinks were then opened and the contents extracted to an Adobe® PDF document and reserved for analysis. Figure 3.1 shows screenshots of examples of anti-vaccination conversations extracted from Pulsar® software.
Figure 3.1: Screenshots from Pulsar® software showing negative vaccine conversations

3.5 DATA ANALYSIS

3.5.1 Classification of sentiments

Data were coded into positive, neutral or negative sentiments by Pulsar® software. A key word searching algorithm imbedded in the software retrieved information and filtered for words based on a predetermined but dynamic ‘dictionary’ that associates certain words or groups of words with a certain sentiment. Two researchers reviewed each post, and manually changed the software assigned sentiment if they both agreed that it was incorrect. Where there was disagreement on an assigned sentiment, the post was sent to the supervisor and a final decision on sentiment allocation was made. A negative sentiment was characterised by data showing concerns about vaccination or the vaccination programme, such as concerns about vaccine adverse effects, vaccine ingredients or any other concern that suggested a negative connotation about vaccines. Positive sentiments were those that promoted vaccination in any way. Neutral sentiments were posts where no clear tone could be detected. The proportion of
Chapter 3: Methodology

each sentiment in relation to the total number of posts, and the proportion of posts from each respective platform (Twitter/ online news/ forum/ microblog) was also calculated by the software.

3.5.2 Frequency of the three vaccination sentiments over a period of 6 months

Following classification into the three sentiments, Pulsar® was also used to quantify the sentiment. A total count of the posts exhibiting positive, neutral or negative sentiment for the period December 2016 to May 2017 was done by the software.

3.5.3 Classification of vaccine content influencers

Pulsar® software was also used to determine the number of ‘impressions’ and ‘visibility’ of vaccine content influencers. The top ten influencer statistics were exported from Pulsar® into a Microsoft® Excel spreadsheet. This was done for both negative and positive content influencers.

Influencer ‘visibility’ is based on an algorithm designed in Pulsar® that takes into consideration the format of the message (whether it is a post or a reply, contains an image, contains a link), the channel where that messages is being posted (e.g. tweets have a shelf life that is shorter than a news article or a blog post), the size of the audience of the person posting that content (e.g. followers on Twitter or monthly unique followers for a news website) and finally the amount of people who react to the post (including comments, re-shares, retweets).

On the other hand, influencer impressions are based only on how many people would have been exposed to a piece of content. It therefore indicates the potential audience for a post. The number of social media followers an influencer has will therefore have a role in the impression score.

3.5.4 Vaccination themes

A thematic step-wise content analysis was conducted, to identify vaccination themes from the data. Following sentiment assignment by Pulsar® software, all the conversations coded as negative were first exported to a Microsoft® Excel spreadsheet and counter-checked to confirm negative sentiment. These were then imported into NVivo®12, a qualitative data analysis software package, for analysis. Coding of the data commenced, following detailed reading of the data in NVivo®12. Data were first coded into nodes by the researcher and re-coded by the supervisor to ensure the trustworthiness of the coding process. Nodes were
created for subjects of particular interest. Figure 3.2 shows an example from NVivo®12 of text coded into nodes.

![Figure 3.2: Example from NVivo®12 showing text coded into nodes](image)

Continuous discussions between the researcher and the supervisor took place to reach consensus regarding the coding. Nodes with related information were then grouped together into categories and sub-categories. An example was segmenting vaccine conversations into different beliefs and myths shared by the public. Data in sub-categories were re-coded and re-assigned into new nodes where necessary. In addition, a word search query was launched for particular terms of interest for example, a search query married a node on ‘beliefs’ with that on ‘measles’ to gain insight on sentiments around the measles vaccine.

The last step in the data analysis process entailed linking categories and sub-categories to one another to form overarching themes with sub-themes that depicted shared anti-vaccination sentiments.

3.6 TRUSTWORTHINESS

3.6.1 Dependability

To ensure dependability, findings were based on verbatim conversations exported from Pulsar®. Filters and keywords built into the system ensured that only relevant information was extracted. Apart from Pulsar®, the researcher used other computer software such as NVivo®12 to guarantee the dependability of data, which included co-coding of the data by a second person (the supervisor). Continuous discussions between the researcher and the
supervisor to reach consensus regarding code-recode procedures further ensured the dependability of the data. Posts can always be repeatedly generated on Pulsar® for as long as the exact search terms are embedded within the search interface.

3.6.2 Credibility

Credibility was ensured by utilising the tactic of prolonged engagement where data for a 6-month period was actively scrutinised. All posts for the 6-month period were analysed. Triangulation of data was also done where conversations were compared across different platforms namely Twitter, forums, microblogs and online news platforms.

3.6.3 Confirmability

3.6.3.1 Confirmability of sentiment assignment

The Pulsar® software automatically assigned sentiment and this was manually counter-checked and confirmed by two researchers. If both researchers agreed with the software assignment, it was left as is. If both disagreed with the assignment, the assignment was changed, and in this way the software was further “trained” to get the assignment correct. Whenever there was disagreement between the two researchers, the post in question was sent to the principle researcher and supervisor and a consensus was reached. The supervisors made the final decision, and where necessary the assignment was corrected, which further “trained” the software.

3.6.3.2 Confirmability of content analysis

Following coding of the data in Nvivo®12, data were co-coded by one of the supervisors, which strengthened the confirmability of the data. Codes, categories and themes were discussed and compared to confirm similarity.

All data exported from Pulsar® were kept on record. In addition, NVivo®12 software allowed maintenance of an audit trail of all negative sentiments.

3.6.4 Transferability

A set of defined keywords and filters were used to extract vaccination conversations. Similar search results can be generated in a different setting if the same keywords are used. The use of NVivo®12 also enabled the maintenance of an audit trail.
3.7 ETHICAL CONSIDERATIONS

The protocol was reviewed by the School of Pharmacy Research Committee, after which ethical clearance for the study was obtained from Sefako Makgatho University Research Ethics Committee (SMUREC) (SMUREC/P/60/2018: PG), prior to data collection (see Appendix A). Informed consent was not required as this was a review of social media conversations in the public domain. Access to personal identifiable information and usernames were restricted where applicable.

3.8 SUMMARY

This was a descriptive qualitative study with content analysis of vaccine sentiments on Twitter, forums, microblogs and online news using Pulsar® software. A quantitative approach was also incorporated to determine the frequency of the classified sentiments. Firstly, an online Boolean search of vaccine related key words was generated and built into Pulsar® software to extract only relevant conversation on human vaccination. The software assigned and quantified sentiment and the sentiment assignment was counter-checked by the researchers. Vaccine content influencer visibility and impression scores were also generated by Pulsar® software and exported into a Microsoft® Excel spreadsheet.

The vaccine related conversations identified by Pulsar® software were then imported into NVivo® 12 for thematic analysis. Data were coded into sub-themes containing similar sets of vaccine related perceptions and these sub-themes were grouped to form major overarching themes.

Several techniques to ensure trustworthiness of the study were employed and these included co-coding of the data by the supervisor, manual counter-checking of the software assigned sentiment and maintenance of an audit trail of data within Pulsar® and NVivo® 12 software.

The results of the data collected in this study, are presented and discussed in Chapter 4, in the form of two manuscripts for publication in accredited journals.
Chapter 4: Results and Discussion

CHAPTER 4
RESULTS AND DISCUSSION

4.1 INTRODUCTION

In this chapter, the results of the study, and discussion thereof, are presented in the form of two manuscripts that will be submitted for publication to Vaccine, a peer-reviewed journal.

Manuscript 1 will be published under the title ‘A profile of vaccine sentiments and vaccine content influencers in South Africa’.

Manuscript 2 will be published under the title ‘South Africa follows America’s lead on anti-vaccination sentiments on social media’.

The manuscripts are formatted according to the requirements and author guidelines of the journal (see Appendix B). The author guidelines are also available in electronic format at: https://www.elsevier.com/wps/find/journaldescription.cws_home/30521?generatepdf=true. For the purpose of the dissertation, text within the manuscripts is presented using 1.5 line spacing and tables and figures are embedded within the text.

Each manuscript is preceded by a letter to the editor of the journal. Please note that Manuscript 1 will be submitted for publication first. Once published, Manuscript 2 will be submitted for publication, as it makes reference to Manuscript 1.

4.2 MANUSCRIPT 1

4.2.1 Manuscript 1: Letter to the editor

This section contains the letter to the editor of Vaccine journal, which will accompany the submission of the manuscript to the journal.
Dear Dr Poland

RE: SUBMISSION OF MANUSCRIPT: A profile of vaccine sentiments and vaccine content influencers in South Africa

Please consider the abovementioned manuscript for publication in the Vaccine journal. The authors (MM Matsangaise, JC Meyer and RJ Burnett) have consented to publication in your journal, and the article has not been published in or submitted to any other journal.

Infant vaccination coverage in South Africa has been shown to be far below the targets set by the World Health Organization and the South African National Department of Health. This resulted in outbreaks of vaccine-preventable diseases which are targeted by the Expanded Programme on Immunisation in South Africa. The contribution of internet-based anti-vaccination lobbying to low vaccination coverage has not been established in South Africa. However, it has been shown globally that vaccination sentiments on social media may contribute to shaping the extent of vaccine uptake by members of the public who use social media.

This study investigated vaccine sentiments on social media. In addition it also explored vaccine content influencers on social media to gain an understanding of individuals and entities who potentially have the largest impact (positive or negative) in order to inform appropriate interventions.

Thank you for your consideration. We look forward to your positive response.

Yours sincerely

Ms MM Matsangaise
03 January 2019
4.2.2 Manuscript 1 for publication.

A profile of vaccine sentiments and vaccine content influencers in South Africa

Michelle Matsangaise¹, Johanna C Meyer ¹,², Rosemary J Burnett²,³

¹Division of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University,

²South African Vaccination and Immunisation Centre, Sefako Makgatho Health Sciences University, Pretoria, South Africa.

³Department of Virology, School of Medicine, Sefako Makgatho Health Sciences University,

Corresponding author: Michelle Matsangaise, Division of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa, South Africa, 0208; Tel: +27 12 521 4567; Fax: +27 12 521 3992; Email: mmatsangaise@yahoo.com
Abstract

Introduction and objectives: The South African Vaccination and Immunisation Centre began a social media tracking project in June 2016, to analyse sentiment on vaccination-related posts. Baseline results of the first 6 months of tracking found that 18% of posts were anti-vaccination. This study reports on the second 6 months of the project. The objective of the study was to classify anti-vaccination themes expressed on South African publicly available social-media platforms, including online news, forums, Twitter and other microblogs. In addition the study sought to identify and classify the main influencers of vaccine content.

Method: Pulsar® software was used to identify human vaccine related conversations on Twitter, news forums and microblogs in South Africa for the period December 2016 to May 2017. A quantitative approach was employed to determine the frequency of the classified sentiments and anti-vaccination themes as well as the impression and visibility scores for vaccine influencers. Data were coded into positive, neutral or negative sentiments and quantified by Pulsar® software.

Results: A total of 11 111 conversations were identified, of which 16.5% were anti-vaccination. Twitter emerged as the biggest source of vaccine-related posts, with tweets making up 83% of all posts. After determining the top 10 influencers of negative vaccine content by visibility score as well as by impression score, a permaculture expert recorded the highest visibility score, while a news agent emerged with the largest impression score.

Conclusion: The vaccination conversational landscape in South Africa is predominantly pro-vaccination with Twitter as the medium of choice for sharing vaccine concerns. Natural health experts seemed to drive the anti-vaccination narrative the most. Anti-vaccination sentiments on South African social media platforms present a serious cause for concern warranting ongoing surveillance of these sites.

Key words
Anti-vaccination, South-Africa, vaccination, sentiments, influencers, social-media
1. Introduction

Each year vaccination saves millions of lives, and remains the most cost-effective way of preventing vaccine-preventable diseases [1]. It is recognised for its role in preventing infectious diseases, thereby reducing the need for antibiotics which in turn reduces antimicrobial resistance. EPI-SA currently provides free universal infant vaccination against disseminated tuberculosis, polio, diphtheria, pertussis, tetanus, *Haemophilus influenzae* type b (Hib) disease, hepatitis B, rotavirus diarrhoea, pneumococcal disease and measles [2]. In addition, the human papillomavirus (HPV) vaccine against cervical cancer is provided to public sector girls from the age of nine [2].

Although EPI-SA has gone to great lengths to improve access to adequate infant immunisation [2] outbreaks of vaccine-preventable diseases continue to occur. For example, cases of measles and diphtheria have been reported in South Africa in 2017 [3,4]. Measles cases were reported in eight provinces of the country in 2017 and as a result it has become increasingly obvious that infant vaccines are not reaching all intended areas and people [3,4]. This supposition is supported by South Africa’s 2016 Demographic and Health Survey, which reported that only 53% of children aged 12 to 23 months had received all their age appropriate vaccines in their first year of life [5].

Reasons for low vaccination coverage range from a lack of confidence in vaccines to limited access to basic healthcare in some communities [6]. Factors related to vaccination coverage include amongst others, socio-economic status and religion [7]. In middle and high income countries, there is better internet access than in lower income countries, which therefore plays a significant role in dissemination of vaccine information and misinformation, shaping sentiment and ultimately the decision on whether or not to vaccinate.

Vaccine sentiments reaching the general public through mass media have also been observed to have an impact on the uptake of vaccines. Previous studies have shown a correlation between a surge in vaccine conversations in the media and a decline/increase in uptake [8,9]. For example, in a study to determine the impact of media coverage of the measles mumps and rubella vaccine (MMR)-autism controversy, a decrease in MMR coverage was observed following media publications [8]. Similarly, a strong correlation was observed between sentiments expressed on Twitter towards a newly introduced influenza vaccine and Centres for Disease Control-estimated vaccination rates in the United States [9]. The impact of the media on vaccination was also demonstrated when Japan suspended its HPV vaccine recommendation following online media outcry about the perceived HPV vaccine adverse effects [7].
Chapter 4: Results and Discussion

Vaccine sentiments may be categorised as positive, neutral or negative based on the tone or nuance gathered from the posts [9,10]. Conversations or posts expressing concerns about adverse effects following immunisation or any form of vaccination hesitancy towards the immunisation programme, would be classified as negative sentiment [10]. Positive or neutral sentiments are those conversations which lack an indication of concern about vaccines or the vaccination programme [11,12]. Some studies have classified conversations as either pro-vaccination, anti-vaccination or neutral [13]. Understanding the different sentiments that the public share about vaccines will help shape interventions tailor-made for a social media audience. However, there are currently no published data from South Africa on the perceptions of social media users towards vaccination.

In addition to understanding sentiments shared on social media, it is equally important to explore vaccine content influencers to identify individuals or organisations who are contributing to shaping vaccine conversations and sentiment. Several public health organisations such as the World Health Organization United Nations Children's Fund and national departments of health are among influential entities harnessing the power of social media in disseminating important vaccination messages. These large organisations capitalise on their relatively extensive social media following and therefore are capable of increasing direct engagement with the public Other influencers include independent social media users who may or may not be affiliated to a public health organisation, are healthcare workers or lay people with a large social media following [14,15]. In addition, online news agents have been observed to make great impressions and are often the most shared/reposted and referenced source of vaccine information on social media [12]. Influencers with an extensive following, pushing anti-vaccination content on social media platforms increase the likelihood of a reduction in vaccine confidence amongst the audiences in their virtual space [16]. Identifying health influencers on social media gives rise to potential partnership between positive influencers and public health organisations for the purposes of designing important health advocacy strategies including interventions for increasing vaccination uptake [14,16].

This study aimed to identify, classify and determine the frequency of sentiments towards human vaccination as well as to profile vaccine content influencers on South African Twitter posts, online news, forums and other microblogs.
Chapter 4: Results and Discussion

2. Methodology

A quantitative retrospective content analysis of all publicly available vaccination conversations on Twitter, online news platforms, forums and microblogs in South Africa for a 6-month period (1 December 2016 to 31 May 2017) was conducted using Pulsar® software, an online ‘social listening’ tool (https://www.pulsarplatform.com/). A Boolean search using the ‘or’ operator was used to identify posts containing at least one of the following terms: Vaccination, vaccinate, vaccine, vaccinations, vaccinates, vaccines, vaccinated, #vaccination, #vaccinate, #vaccine, #vaccinations, #vaccinates, #vaccines, #vaccinated, #vinentings, #vinentings, #vinentings, #vinentings, #vinentings, #vinentings, #vinentings.

Pulsar® software is designed to code post sentiment as positive, neutral or negative. For this study, two researchers reviewed each post, and manually changed the software assigned sentiment if they both agreed that it was incorrect. Where there was disagreement between the two, the post was sent to the supervisor, who made the final decision on sentiment allocation. Negative sentiment was characterised by concerns about vaccination, such as concerns about adverse effects, ingredients or any other concern that suggested a negative attitude towards vaccines. Positive sentiments were those that promoted vaccination in any way. Neutral sentiments were those where no clear tone or attitude could be discerned. The proportion of each sentiment in relation to the total number of posts, and the proportion of posts from each respective platform (Twitter/online news/forums/microblogs) was calculated by the software. Data were also automatically filtered according to whether the post was an original post or a reaction/engagement, i.e. retweets, shares and replies. However, for the purposes of sentiment analysis, reactions/engagements were not separated from original posts as it was assumed that users retweet/share posts that reflect their own attitude.

Pulsar® software also calculated the number of ‘impressions’ and ‘visibility’ of both negative and positive vaccine content influencers. Influencer ‘visibility’ is based on an algorithm designed in Pulsar® that takes into consideration the format of the message (e.g. whether it is a post or a reply; if it contains an image or a link), the channel where that message is being posted (e.g. tweets have a shelf life that’s shorter than a news article or a blog post), the size of the audience of the person posting that content (e.g. followers on Twitter or monthly unique users of a news website) and finally the amount of people who react to the post (including comments, re-shares, retweets etc.). On the other hand, influencer “impressions” are based only on how many people may have been exposed to a piece of content. It therefore indicates the potential audience for a post.
3. Results

3.1 Distribution of vaccine conversations on online platforms

Over the six months of the study period, 11 111 posts about human vaccinations were identified on Twitter, online news platforms, forums and microblogs. The largest proportion of all the posts (83.1% [9238/11 111]) were on Twitter; 12.6% (1404/11 111) were on online news platforms; 3.9% (431/11 111) were on forums; and 0.3% (38/11 111) were on microblogs. More than half (57.5% (6388/11 111)) of all the posts were original posts. The rest (4723) comprised of engagements/reactions which include retweets, shared posts and replies to original posts.

3.2 Distribution of sentiments towards vaccination

The majority of these posts (72.5% [8064/11 111]) were positive about vaccination. Negative and neutral sentiments made up 16.5% (1834/11 111) and 10.9% (1213/11 111) respectively. Table 1 presents the proportion of the vaccine sentiments with examples of posts, retweets, shared posts and replies to original posts.

3.3 Vaccine content influencers

The software quantified the visibility and impressions of vaccine content influencers, and filtered them according to either negative or positive sentiment (see Table 2 to Table 5). For ethical reasons, the influencers are identified by the description of their biography in the header section on the relevant social media platform.

3.3.1 Negative vaccine content influencers

The top ten negative vaccine content influencers by visibility are shown in Table 2 with the corresponding posts or tweets with the highest visibility for each influencer. The top 10 negative vaccine content influencers by impressions are displayed in Table 3 with corresponding tweets or posts that had the greatest impression score.

3.3.2 Positive vaccine content influencers

Similarly, positive vaccine influencers were identified according to the biography descriptions in their headers on the relevant social media platforms. The top 10 influencers by visibility and impression score were also identified and are shown in Table 4 and Table 5 respectively. The number of social media followers for the influencers is also illustrated.
Table 1: Frequencies of vaccine sentiments on Twitter, online news platforms, forums and microblogs with example posts.

<table>
<thead>
<tr>
<th>Sentiment</th>
<th>Vaccine posts n (%)</th>
<th>Example post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>8064 (72.5%)</td>
<td>“My throat is rusty and rough, started this morning. Flu is on its way. Antibiotics and medlemon or I got to get flu vaccine…”</td>
</tr>
<tr>
<td>Neutral</td>
<td>1002 (10.9%)</td>
<td>“#WHO to Pilot #Malaria Vaccine in #Africa”</td>
</tr>
<tr>
<td>Negative</td>
<td>1834 (16.5%)</td>
<td>“Don’t want none of that man-made stuff around my precious snowflake” #antivax #natural #toxins #vaccines</td>
</tr>
</tbody>
</table>

Total 11 111

Table 2: Top 10 negative vaccine influencers’ visibility according to scores.

<table>
<thead>
<tr>
<th>Influencer biography or affiliation</th>
<th>Source</th>
<th>Visibility score</th>
<th>Post with highest visibility score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permaculture advocate</td>
<td>Twitter</td>
<td>2235</td>
<td>“Shocking vaccine study finds that teens are being wildly overdosed with multiple HPV injections that do NOTHING to prevent genital warts…”</td>
</tr>
<tr>
<td>Geopathology expert</td>
<td>Twitter</td>
<td>1886</td>
<td>“Hello @##. The #Malaria #Vaccine is a #Scam & #Fraud, just like the #HPV #Vaccine! Everyone supporting it is a #Fraudster!!”</td>
</tr>
<tr>
<td>Consumer health advocate /Editor of naturalnews.com</td>
<td>Twitter</td>
<td>1416</td>
<td>“…want to hear a f##d up #vaccine story? How about cancer put in polio vaccines on purpose…”</td>
</tr>
<tr>
<td>Educator/Blogger</td>
<td>Twitter</td>
<td>1325</td>
<td>“Vaccine fraud exposed: Measles and mumps making a huge comeback because vaccines are designed to fail, say Merck…”</td>
</tr>
<tr>
<td>Blogger</td>
<td>Blog</td>
<td>1029</td>
<td>“That’s the way my wife and I feel about it, along with millions of others. I was never vaccinated. At 41 years old I’m in perfect health. My kids of 3 and 9 are also unvaccinated and perfectly healthy.”</td>
</tr>
<tr>
<td>Writer/organic farmer</td>
<td>Twitter</td>
<td>899</td>
<td>“You Can’t Just Trust #Doctors Anymore” – 13-Year-Boy Is Paralyzed From the Neck Down After #Gardasil #HPV Vaccine…”</td>
</tr>
<tr>
<td>Blogger</td>
<td>Blog</td>
<td>882</td>
<td>“Another girl seriously ill after HPV vaccine…”</td>
</tr>
<tr>
<td>Blogger</td>
<td>Blog</td>
<td>882</td>
<td>“RE: Another girl seriously ill after HPV vaccine”*</td>
</tr>
<tr>
<td>Blogger</td>
<td>Blog</td>
<td>735</td>
<td>“RE: Another girl seriously ill after HPV vaccine”*</td>
</tr>
<tr>
<td>Blogger</td>
<td>Blog</td>
<td>593</td>
<td>“The government in Italy has ruled that children must be vaccinated against 12 common illnesses before they can enrol for state-run schools…But when it comes to abortion the argument is pro-choice”</td>
</tr>
</tbody>
</table>

*Re-shared a post
Table 3: Top 10 negative vaccine influencers’ impressions according to scores.

<table>
<thead>
<tr>
<th>Influencer user biography/affiliation</th>
<th>Source</th>
<th>Impressions score</th>
<th>Post with highest impression score</th>
</tr>
</thead>
<tbody>
<tr>
<td>News agent</td>
<td>Twitter</td>
<td>50,238</td>
<td>“Cervical cancer vaccine gave my child brain disease”</td>
</tr>
<tr>
<td>Social media strategist</td>
<td>Twitter</td>
<td>33,707</td>
<td>*Tweet taken down.</td>
</tr>
<tr>
<td>Journalist</td>
<td>Twitter</td>
<td>24,942</td>
<td>“Vaccines cause disease, I can refer you to vast literature on the dangers of vaccines.”</td>
</tr>
<tr>
<td>Lay person reporting on Capetown news</td>
<td>Twitter</td>
<td>23,566</td>
<td>“RE:Cervical cancer vaccine gave my child brain disease”</td>
</tr>
<tr>
<td>Radio station</td>
<td>Twitter</td>
<td>10,031</td>
<td>“The only effective Vaccines to end new HIV/TB/Cancer Infections is Free Quality Edu, LAND, BAN GMOs #StopProfiteering…”</td>
</tr>
<tr>
<td>Geopathology expert</td>
<td>Twitter</td>
<td>9,830</td>
<td>“Hello @_SaveSA, it is our Duty to #WAKE_UP_SouthAfrica, if @GovernmentZA does not care about its people and … #Vaccines #KILL!”</td>
</tr>
<tr>
<td>Celebrity/fashion designer</td>
<td>Twitter</td>
<td>8,794</td>
<td>“Ginger, cinnamon, and garlic with honey does the trick. Forget the vaccine. Gave my kids flu”</td>
</tr>
<tr>
<td>Blogger</td>
<td>Blog</td>
<td>7,894</td>
<td>“That's the way my wife and I feel about it, along with millions of others. I was never vaccinated. At 41 years old I'm in perfect health. My kids of 3 and 9 are also unvaccinated and perfectly healthy”</td>
</tr>
<tr>
<td>Sportscience expert</td>
<td>Twitter</td>
<td>7,423</td>
<td>“Docs profit from vaccines. Dieticians get $$$ for prescribing hi-carb diets. Lots of imaginary money out there in conspiracy land…”</td>
</tr>
<tr>
<td>Lay person (not specified)</td>
<td>Twitter</td>
<td>6,803</td>
<td>*Tweet taken down</td>
</tr>
</tbody>
</table>

*Post could not be retrieved as it had been taken down from the social media platform at time of study.
Table 4: Top 10 positive vaccine influencers’ visibility according to scores.

<table>
<thead>
<tr>
<th>Influencer user biography/affiliation</th>
<th>Source</th>
<th>Visibility Score</th>
<th>Post with highest visibility score</th>
</tr>
</thead>
<tbody>
<tr>
<td>News agent</td>
<td>Twitter</td>
<td>7295</td>
<td>“The Federal Government has reiterated its commitment to eradicating polio in Nigeria by making funds available early for the purchase of vaccines for immunization against the disease.”</td>
</tr>
<tr>
<td>News agents</td>
<td>Twitter</td>
<td>6485</td>
<td>“Is your kid up-to-date with their shots? Our @### explains why vaccinations are important…”</td>
</tr>
<tr>
<td>Paediatric infectious diseases fellow/child health advocate</td>
<td>Twitter</td>
<td>4353</td>
<td>“I don’t make a penny from promoting vaccines. And I’m saying: vaccinate!”</td>
</tr>
<tr>
<td>Virologist</td>
<td>Twitter</td>
<td>4267</td>
<td>“Sad! ANOTHER vaccine that works, that’s getting side-lined!!”</td>
</tr>
<tr>
<td>News agent</td>
<td>Twitter</td>
<td>3296</td>
<td>“Thumbs up for HPV cancer vaccine on young girls”</td>
</tr>
<tr>
<td>News agent</td>
<td>Twitter</td>
<td>2750</td>
<td>“An Australian mom warns about the dangers of skipping whooping cough vaccine…”</td>
</tr>
<tr>
<td>Blogger</td>
<td>Blog</td>
<td>2644</td>
<td>“It isn’t like vaccines are replacing your immune system. It’s more like they’re exercising it.”</td>
</tr>
<tr>
<td>Journalist</td>
<td>Twitter</td>
<td>2518</td>
<td>“Thumbs up for HPV cancer vaccine on young girls…”</td>
</tr>
<tr>
<td>Departmental store/Pharmacy</td>
<td>Twitter</td>
<td>2511</td>
<td>“The flu vaccine is NOW available in over 195 Clicks clinics. Book today, BEFORE you get sick!”</td>
</tr>
<tr>
<td>‘Non-profit initiative’</td>
<td>Twitter</td>
<td>2482</td>
<td>“On the 20th HIV Vaccine Awareness Day, UNAIDS is calling for continued research to find a vaccine for HIV.”</td>
</tr>
</tbody>
</table>
Table 5: Top 10 positive influencers’ impressions by scores.

<table>
<thead>
<tr>
<th>Influencer user biography/affiliation</th>
<th>Source</th>
<th>Impressions score</th>
<th>Post with highest impression score</th>
</tr>
</thead>
<tbody>
<tr>
<td>News agent</td>
<td>Twitter</td>
<td>2,421, 201</td>
<td>“Experts stress importance of vaccination against measles.”</td>
</tr>
<tr>
<td>News agent</td>
<td>Twitter</td>
<td>1,271, 465</td>
<td>“SA has launched the world’s best hope at an #HIV Vaccine. Read what will happen next if it works…”</td>
</tr>
<tr>
<td>News agent</td>
<td>Twitter</td>
<td>1,217, 627</td>
<td>“New vaccine could curb child deaths in Africa…”</td>
</tr>
<tr>
<td>News agent</td>
<td>Twitter</td>
<td>942, 079</td>
<td>“I’m making history’ - First HIV vaccine volunteers…”</td>
</tr>
<tr>
<td>Journalist</td>
<td>Twitter</td>
<td>456, 208</td>
<td>“Polio GPEI says vaccination teams are aiming to reach every child under age five in 13 countries in West & Central Africa. #sabcnews…”</td>
</tr>
<tr>
<td>News agent</td>
<td>Twitter</td>
<td>336, 543</td>
<td>“Promising Results With Ebola Vaccine in Guinea…”</td>
</tr>
<tr>
<td>Radio station</td>
<td>Twitter</td>
<td>33, 1029</td>
<td>“This is inspiring & this vaccine is of paramount importance, your guests are sounding very positive & convincing…”</td>
</tr>
<tr>
<td>Municipality official page</td>
<td>Twitter</td>
<td>258, 926</td>
<td>“Parents and caregivers urged to ensure they are up to date with children’s vaccinations as per the immunisation schedule.#measlesoutbreak…”</td>
</tr>
<tr>
<td>Departmental store/pharmacy</td>
<td>Twitter</td>
<td>253, 372</td>
<td>“Reduce your child’s risk of cancer with the HPV vaccine.”</td>
</tr>
<tr>
<td>News agent</td>
<td>Twitter</td>
<td>250, 691</td>
<td>“Bite-mimicking malaria vaccine shows promise.”</td>
</tr>
</tbody>
</table>

4. Discussion

This study profiled vaccine sentiments expressed on publically available South African social media platforms over a six month period from December 2016 to May 2017, and identified the top influencers of sentiment during this period. The results add to baseline data collected from June to November 2016, in which Twitter was also the biggest source of vaccine-related posts, with tweets making up 81% of posts [17] which is very similar to 83% found in this study. The relatively wide use of Twitter as compared to other publically available social media platforms in these studies shows its potential as a tool for reaching a larger audience and for possible dissemination of vaccine safety information. Moreover, Twitter is ideal for use in real-time surveillance of new vaccine preventable disease outbreaks as seen in previous studies [18,10]. Real-time tracking of new disease outbreaks allows for ‘rumour surveillance’ and early detection of outbreaks to inform timely interventions [10].
The conversations comprised of 57.5% of original posts and 42.4% reactions to original posts. This is comparable to figures from a global study of measles vaccination conducted on Twitter with a proportion of 55.7% of original posts [19].

The results of this study showed an overwhelming positive conversational landscape on human vaccination (72.5%), which was very similar to the 69% of posts found in the baseline study [18]. In agreement with this trend, a slight reduction in negative sentiment from 18% [18] to 16.5% was found. These findings confirm the presence of vaccine hesitancy as a result of anti-vaccination lobbying on the South African internet as observed in a previous study [20]. Timely interventions aimed at curbing this growing phenomenon in the South African context may be necessary as the country is already threatened by suboptimal coverage of vaccinations due to poor access to immunisation services [2]. A positive correlation between anti-vaccination sentiments in the media and a resultant decrease in vaccine uptake has previously been observed [8, 9].

This study also determined major influencers of vaccine content on social media, taking into consideration both positive and negative influencers. The top 10 negative influencers were neither communicable disease experts nor healthcare practitioners, raising questions about their credibility. Natural health enthusiasts (geopathologist, permaculture experts, and the editor of naturalnews.com) in this study seemed to drive the anti-vaccination narrative as evident from their higher visibility scores (Table 2). The influence of news agents in the spread of positive vaccination content is noteworthy. News agents with their large impression and visibility scores, present a possible channel through which targeted vaccine safety information can be conveyed more efficiently. The absence of public health organisations at the fore-front of the pro-vaccination narrative is a cause for concern, as pointed out by a previous study [13] highlighting the lack of participation of government and public health organisations in refuting anti-vaccination claims on social media.

The study had a number of limitations including the fact that it was conducted on selected social media networks hence the results exclude the proportion of the South African population that do not use these networks as well those who do not have access to the internet. In addition some posts did not contain the original user’s content but were made up of re-tweets or re-shared posts to which in this study an assumption was made that one re-shares content that they agree with unless they explicitly provide additional accompanying text contrary to this. Moreover some challenges with the Pulsar® software made the sentiment re-assignment by researchers cumbersome, as the software was unable to detect certain sentiments, for
example, sarcasm. As a result a lot of the software assigned sentiment had to be re-assigned manually.

5. Recommendations and conclusion

Although the majority of conversations on South African social media are predominantly positive, the infiltration of anti-vaccination elements needs to be addressed. Adopting the use of social media as a real-time surveillance system for new outbreaks allows public health organisations to take a more pro-active role in disease prevention as opposed to a reactive role when outbreaks have already spread. Because of the challenges faced with using the Pulsar® software, more improved, thoroughly tested computer software for such surveillance is highly recommended for use by public health organisations.

It is also important to capitalise on the existing strongly positive proportion of positive sentiments by augmenting these with educational material on vaccine safety, and to design tailor-made interventions that are specific to the targeted audience. The involvement of government and public health organisations as credible sources of vaccine safety information is of paramount importance. Such organisations already boast huge social media following, for example, the South Africa National Department of Health Twitter account has over 49 700 followers (https://twitter.com/HealthZA) equipping it with the potential to spread educational material with greater efficiency. The use of facts coupled with emotional appeals has been seen to be effective in countering the anti-vaccination narrative [22]. The viral nature of social media and the internet in general requires vigilance from public health practitioners in reacting to public concerns about vaccines as well as in ensuring the correct information is communicated towards shaping positive sentiment.

Acknowledgements: The authors thank Mr Neil Burnett for assisting with Pulsar® software and sentiment assignment.

Funding: This project was funded by the National Research Foundation, South Africa.

References:

Chapter 4: Results and Discussion

Chapter 4: Results and Discussion

4.3 MANUSCRIPT 2

4.3.1 Manuscript 2: Letter to the editor

This section contains the letter to the editor of *Vaccine* journal, which will accompany the submission of the manuscript to the journal.
Dr Gregory Poland
Editor in Chief: Vaccine
Rochester, Minnesota, USA

Dear Dr Poland

RE: SUBMISSION OF MANUSCRIPT: South Africa follows America’s lead on anti-vaccination sentiments on social media

Please consider the abovementioned manuscript for publication in Vaccine. The authors (MM Matsangaise, JC Meyer and RJ Burnett) have consented to publication in your journal, and the article has not been published in or submitted to any other journal.

The re-emergence of vaccine preventable diseases in some provinces in South Africa has made it apparent that vaccines are not reaching all. Evidence of internet based anti-vaccination lobbying in South Africa as well as a paucity of conversations exhibiting vaccination hesitancy on South African social media has been a cause for concern. No data on anti-vaccination sentiments in South Africa has been published as yet. This study therefore sought to decipher anti-vaccination sentiments on selected South African social media.

This is the first South African study on anti-vaccination sentiments on social media, providing insight into common themes based largely on American anti-vaccination lobbying.

Thank you for your consideration. We look forward to your positive response.

Yours sincerely

Ms MM Matsangaise
03 January 2019
4.3.2 Manuscript 2 for publication

South Africa follows America’s lead on anti-vaccination sentiments on social media

Michelle Matsangaise¹, Johanna C Meyer¹,², Rosemary J Burnett²,³

¹Division of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University,

²South African Vaccination and Immunisation Centre, Sefako Makgatho Health Sciences University, Pretoria, South Africa.

³Department of Virology, School of Medicine, Sefako Makgatho Health Sciences University,

Corresponding author: Michelle Matsangaise, Division of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa, South Africa, 0208; Tel: +27 12 521 4567; Fax: +27 12 521 3992; Email: mmatsangaise@yahoo.com
Abstract

Introduction and objectives: Although vaccination is recognised as one of the most cost-effective public health interventions, outbreaks of vaccine preventable diseases in South Africa have made it apparent that vaccines are not reaching all. Evidence of anti-vaccination lobbying on the South African internet in a previous study further raised concerns and identified the need to determine anti-vaccination sentiments on South African social media. The objectives of the study were therefore to identify and describe anti-vaccination themes on Twitter, news platforms, forums and microblogs in South Africa.

Method: A descriptive qualitative study using content analysis of vaccination-related social media posts, identified by Pulsar® software for the period December 2016 to May 2017 was conducted. Conversations classified as negative were then imported into NVivo™12 software and open-coding was used to develop a framework of categories and themes.

Results: Common anti-vaccination themes included the following: the conspiracy theory that Big Pharma develops vaccines for financial gain; the theory linking vaccines to autism; issues surrounding safety of vaccines and vaccine ingredients; and concerns about the effectiveness of vaccines. Frequent reference to American based anti-vaccination posts was also observed.

Conclusion: Anti-vaccination sentiments on South African social media platforms present a serious cause for concern. Themes identified provide further valuable information that can be used by the South Africa National Department of Health to develop targeted messages about vaccine safety. Data from global studies showing the correlation between negative sentiments and the possibility of deciding not to vaccinate, make it especially important to address this growing phenomenon. Targeted interventions addressing a social media audience are therefore paramount. The viral nature of the internet makes these interventions especially urgent.

Key words: Anti-vaccination, South-Africa, vaccination, sentiments, hesitancy, social media
1. Introduction
Vaccination hesitancy, fuelled by the emergence of anti-vaccination lobbying, is a growing phenomenon on social media platforms in high income countries [1]. Vaccination hesitancy is defined as a lack of willingness to vaccinate despite vaccination services being available [2]. Evidence from recent studies in South Africa shows the increasing presence of anti-vaccination lobbying on the South African internet [3,4]. However, there is a paucity of scientific literature about the influence that social media-based anti-vaccination lobbying has on vaccination uptake in South Africa.

Several beliefs propagated by anti-vaccination lobbyists pertaining to vaccines and the vaccination programme, are shared on social media by anti-vaccination lobbyists and vaccine hesitant parents. Some of the common anti-vaccination themes encountered on the internet and social media include concerns about vaccine safety, vaccine effectiveness, human rights issues around consent, religious beliefs and conspiracy theories involving pharmaceutical companies and the government [5,6].

The vaccine safety theme is common with fears that vaccines are not safe having been around since the invention of the first vaccine against smallpox [7,8]. However, it was the 1998 report in The Lancet by Wakefield et al., suggesting a link between the measles, mumps and rubella vaccine (MMR) and autism [9] that gave rise to modern anti-vaccination lobbying, which is primarily focused on the myth that vaccines are not safe. Since the advent of social media, this myth has been a dominant and recurring theme, with studies reporting on varying safety related claims being made on social media, ranging from a lack of confidence in vaccine ingredients, to concerns about vaccine adverse effects as well as a belief that vaccines have the potential to cause disease [6,10].

In addition to the vaccine safety theme, a theme around vaccine effectiveness is also recurrent. Vaccine effectiveness has been questioned by vaccine hesitant parents who have been exposed to anti-vaccination misinformation, with sentiments ranging from a complete lack of confidence to partial acceptance [6]. Some questioned why it was possible to still contract the disease against which one is vaccinated. In addition anti-vaccination conversations often recommend alternative therapies such as vitamin C and D supplementation for influenza and lifestyle adjustments in place of vaccines, with these practices being credited for the decline in vaccine preventable diseases [10]. Others are of the belief that vaccines are not ‘natural’ and that complementary medicines are more effective than vaccines for preventing disease [11].
Anti-vaccination sentiments on social media have also been characterised by questioning the perceived breach of human rights through mandatory vaccination in countries where childhood vaccines are legally compulsory [6]. Some parents expressed concern at the ‘lack of respect’ for their decision to have their children abstain from vaccines as they held the belief that they were the ‘experts’ of their own children [12]. Others were of the view that mandatory vaccines were an expression of the government’s excessive control and felt that this was therefore a violation of civil liberties [6,11]. Concerns about the girls-only mandate of the HPV vaccine were also expressed and questions about who should be the decision maker when it comes to HPV vaccination were also observed [11].

Conspiracy theories are also a common occurrence in the anti-vaccination narrative. Negative sentiments around vaccination often stem from a lack of trust in health governing boards as well as the government [10,13,14] Anti-vaccination lobbyists often make reference to the perceived financial benefit that ‘Big Pharma’ and organisations such as the Centres for Disease Control (CDC) stand to gain from the vaccination programme [14].

Because of internet-based anti-vaccination lobbying on South African webpages, in 2016, the South African Vaccination and Immunisation Centre started a project using software that tracks vaccination conversations on social media networks, including online news platforms, forums, Twitter and other microblog platforms. The search algorithm and sentiment allocation methodology were piloted from June to November 2016, rendering the software ready to be used for tracking South African vaccination conversations on social media [15]. The aim of this study was to identify and describe anti-vaccination themes mentioned on South African online news platforms, forums, Twitter and other microblogs.

2. Methodology
This was a descriptive qualitative study, using content analysis of 1834 posts that were previously identified as expressing negative sentiment [16] in online vaccination conversations on Twitter, microblogs, forums and online news platforms in South Africa for a 6-month period (1 December 2016 to 31 May 2017). These posts were stored on Pulsar® software, as previously described [16] and were exported from Pulsar® and imported into NVivo12®, a qualitative data analysis computer software package, developed by QSR International. Posts from the search results often contained hyperlinks to other websites in which some of the search terms were mentioned. These hyperlinks were then opened and the contents extracted to an Adobe® PDF document and reserved for analysis.
A step-wise thematic content analysis of the data was conducted. Coding of the data commenced, following detailed reading of the posts in NVivo®12. Data were coded into nodes by the first author and re-coded by the second author to ensure the trustworthiness of the coding process. Continuous discussions between the two authors followed until consensus was reached about the coding, which further ensured the dependability of the data. Nodes were grouped into categories and sub-categories. Categories were then linked to one another forming overarching themes with sub-themes that depicted shared anti-vaccination sentiments.

3. Results
The thematic analyses of the negative sentiments, generated four overarching themes. These themes are discussed in the following sections with illustrating posts to support the findings. Table 1 presents further examples of posts for the four overarching themes.

Vaccine safety concerns
The overarching theme on concerns about vaccine safety identified varying sub-themes. One sub-theme centered around the perception that vaccinating would result in the development of adverse effects that included obsessive compulsive disorders, anorexia nervosa, a host of other brain and neurological disorders, and death.

Several conversations indicated a belief that vaccines could trigger autoimmune disorders and a recurring concern that vaccines could make one sick. Fears of vaccines causing the disease against which they are supposed to render protection were also expressed. In particular many expressed their hesitancy towards getting the influenza vaccine which they believed increased the chance of getting influenza. Another common belief was that vaccines resulted in the spread of disease. Examples of such posts are shown in Table 1.
Table 1: Anti-vaccination themes and examples of posts.

<table>
<thead>
<tr>
<th>Theme</th>
<th>Example post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccine safety concerns</td>
<td>“…children are routinely brain damaged by vaccines, hospitalized by vaccines, paralyzed, put into comas and sometimes killed.” (Source, Blog)</td>
</tr>
<tr>
<td></td>
<td>“…death was believed to have been caused by eight simultaneous vaccinations.” (Source, Twitter)</td>
</tr>
<tr>
<td></td>
<td>“The research is hard to ignore, vaccines can trigger autoimmunity with a laundry list of diseases to follow.” (Source, Twitter)</td>
</tr>
<tr>
<td></td>
<td>“More r vaccines has only given us more sick people…” (Source, Twitter)</td>
</tr>
<tr>
<td></td>
<td>“…some new vaccine made in South Africa be tested on our kids...Now It had caused sicknesses 😢😠” (Source, Twitter)</td>
</tr>
<tr>
<td></td>
<td>“…just seems so unnatural to inject her with chemicals. & also vaccination injury/getting sick from the vaccine itself.” (Source, Twitter)</td>
</tr>
<tr>
<td></td>
<td>“…vaccines that are given to us, that later on causes these diseases.” (Source, Twitter)</td>
</tr>
<tr>
<td></td>
<td>“People vaccinated against #Flu 3 years in a row are @ higher risk of catching the flu.” (Source, Twitter)</td>
</tr>
<tr>
<td>Vaccine-autism theme</td>
<td>“Egyptian study confirms autism is caused by mercury in vaccines.” (Source, Twitter)</td>
</tr>
<tr>
<td></td>
<td>“Vaccination show clear signs of causing Autism. As a relative of a child who has this; it began after vaccinations. Concerns me.” (Source, Twitter)</td>
</tr>
<tr>
<td></td>
<td>“@realDonaldTrump: A study says @Autism is out of control-a 78% increase in 10 years. Stop giving monstrous combined vaccinations.” (Source, Twitter)</td>
</tr>
<tr>
<td></td>
<td>“What Did You Expect From The Vaccines? That's right - what did you expect?! No, thanks I don't want no goddamn autism!”. (Source, Twitter)</td>
</tr>
<tr>
<td></td>
<td>“Autism epidemic is real, and excessive vaccinations are the cause.” (Source, Twitter)</td>
</tr>
<tr>
<td>Concerns about vaccine effectiveness</td>
<td>“…my hubby had measles last year and he has full vaccinations done…” (Source, Twitter)</td>
</tr>
<tr>
<td></td>
<td>“My question is, how can unvaccinated kids be a problem to vaccinated kids? If vaccinations work.” (Source, Twitter)</td>
</tr>
<tr>
<td></td>
<td>“If the vaccine in question is so weak that a small fringe group of people not vaccinated could pose any real threat to those vaccinated, then the issue is with the vaccine’s inefficiency not the anti-vaxxers” (Source, Twitter)</td>
</tr>
<tr>
<td></td>
<td>What if they see that AIDS is not infecting enough people then introduce an ineffective vaccine; to encourage risky sexual behaviour? (Source, Twitter)</td>
</tr>
<tr>
<td>Conspiracy theories</td>
<td>“The fact is that vaccines are a $30 billion dollar a year industry, and those who benefit from it are going to do whatever they can to protect their own interests.” (Source, Blog)</td>
</tr>
<tr>
<td></td>
<td>“Best medical advice would be to tell America that vaccines are a toxic SCAM so Big Pharma can make TRILLIONS” (Source, Blog)</td>
</tr>
<tr>
<td></td>
<td>“Vaccine pushers destroy the lives of children while pocketing money from Big Pharma.” (Source, Twitter)</td>
</tr>
<tr>
<td></td>
<td>“The Government is Using Vaccines to Give Black Kids Autism…..can someone please share a light on this its disturbing.” (Source, Twitter)</td>
</tr>
<tr>
<td></td>
<td>“Vaccines are full of toxins and carcinogens, including fetal tissue. The Elite have admitted that vaccines are being used for depopulation” (Source, Twitter)</td>
</tr>
<tr>
<td></td>
<td>“Clinton was also a favorite pick for Big Pharma and the obscene chemical medication industry that preys upon endless disease to generate massive corporate profits while offering no real cures.” (Source, Twitter)</td>
</tr>
</tbody>
</table>
Mentions of vaccines causing cancer were also common with many believing that the vaccine contained cancer causing enzymes, which predisposed one to developing cancer, as illustrated by the following three Twitter posts:

“DO NOT VACCINATE!!! The sh** is laced with cancer inducing additives”
(Source, Twitter)

“…#vaccine given to millions knowing #cancer virus in it; passed to offspring.”
(Source, Twitter)

“Cancer industry profits & locked in#39; by nagalase molecule injected into humans via vaccines.” (Source, Twitter)

Another sub-theme of commonly expressed conversations was around vaccine additives which were often labelled as ‘harmful’ and ‘toxic’. Mentions of ingredients such as the mercury based preservative thimerosal (sometimes referred to as mercury) were recurrent. There was a common belief that the mercury in vaccines was responsible for causing neurological disorders. Another additive, aluminium, was also mentioned and implicated, for example:

“Vaccine harm may be increasing with each generation; vaccine ingredients such as aluminium have been shown to alter the mitochondria.” (Source, Twitter)

Other conversations included the belief that vaccines contained foetal tissue and some expressed concerns over the use of aborted babies in vaccine preparations. Religious reasons for foregoing vaccines were cited in conversations where the user did not agree with the use of foetal tissue in vaccine additives. Vegans expressed concerns over the use of animal based additives in vaccine formulations, while animal rights activists perceived the use of animal products as an act of cruelty against animals. These sentiments are illustrated by the posts below.

“BOMBSHELL: Complete list of vaccine excipient ingredients approved by CDC
(includes cells from aborted human foetus” (Source, Twitter)

“Vaccine warning for VEGANS: Vaccines are made with a cocktail of animal parts, human foetal tissue cell lines and African monkey cells …”
(Source, Twitter)
Vaccine-autism link
Linked to the vaccine safety theme was another recurring mention of the perceived association between vaccination and the emergence of autism. Several posts showed a general belief that vaccine additives such as mercury resulted in the development of autism and autism spectrum disorders. One Twitter user remarked that they believed their loved one developed autism after vaccination. Many social media users made reference to claims by President Donald Trump of the United States of America (USA), where he had expressed his belief in a possible link between what he termed “monstrous combined vaccines” and autism. Another person who shared his sentiment was opposed to the quantity of vaccines which he regarded as “excessive” and the reason for the emergence of autism.

Concerns about vaccine effectiveness
The conversational landscape on the social media platforms in this study also showed a general lack of confidence in the effectiveness of vaccines. Several people who doubted vaccine effectiveness often questioned why cases of vaccine preventable diseases still existed in people who had been vaccinated. A permaculture expert on Twitter who expressed his/her doubt over vaccine effectiveness mentioned a meningitis case in an 8 year old who developed meningitis despite receiving the vaccines. Similarly, following a measles and mumps outbreak, vaccine hesitant users further queried the efficacy of vaccines. A Twitter user hypothesised that the recently introduced HIV vaccine was designed to be ineffective and was meant to encourage risky sexual behaviour.

Conspiracy theories
Conspiracy theories around government organisations, health boards and Big Pharma emerged as a recurring theme. Health regulatory boards such as the CDC and the USA Food and Drug Administration were often accused of withholding information on vaccine adverse effects and instead overinflating vaccine safety information. One Twitter user was of the opinion that racial motives may have led the CDC to hide data that “revealed relationship between black boys, immunisations and autism”. The same user further mentioned that vaccines were “germ warfare against black kids”. Similarly a Twitter user believed that vaccination was meant to “depopulate the world.”

Another Twitter user doubted the safety of vaccines, perceiving them as weapons of “biological warfare.” A recurring perception of vaccines, as a form of “medical genocide” targeted at Africans was also observed. One post had the following to say about vaccines in Africa:
“In America they infected African Americans with syphilis under the pretence it was a vaccination so imagine what they have done in Africa?” (Source, Twitter)

In another post, the user was concerned about Bill Gates possibly introducing and advertising in South Africa “a new deadly vaccine”. Another Twitter user believed In addition Bill Gates was believed to be funding vaccination programmes, “which would lead to pandemics”.

Conspiracy theories around pharmaceutical companies observed in this study mostly cited profit as the major motive for Big Pharma manufacturing vaccines. There was a common belief that vaccine manufacturing companies do so primarily for financial gains. One blogger called vaccine programmes a “…toxic scam so Big Pharma can make money”. Another Twitter user was of the opinion that pharmaceutical companies manipulate scientific data to make vaccines seem effective in order to make profit.

4. Discussion

This study, which aimed to investigate anti-vaccination sentiments on selected South African social media platforms from 1 December 2016 to 31 May 2017, identified four major themes namely concerns about vaccine safety, a perceived vaccine-autism link, concerns about vaccine effectiveness, and conspiracy theories about vaccines and the vaccine industry. The anti-vaccination conversational landscape in South Africa is comparable to other previous studies in other regions \([5,6,11,12,13,17]\). The influence of anti-vaccination content from first world regions is evident from this study in the South African context as observed by the numerous references to American health regulatory boards’ policies and the opinion of the American president on vaccines.

This study identified concerns falling under the vaccine safety theme that were comparable to other studies in South Africa as well as the Netherlands \([6,10]\). Perceptions about vaccines causing adverse effects as well as causing illness were commonly shared on South African social media platforms. Similarly, a study of YouTube videos related to immunisations had reported that vaccines were perceived to cause a range of serious adverse events including neurological injury and some form of permanent injury \([17]\). In addition many shared fears of vaccines causing the diseases against which they are supposed to render protection, a notion documented in a previous study \([10]\). The vaccine safety theme was also characterised by mention of vaccine additives which were perceived to cause harm. Mercury and aluminium were the ingredients most mentioned in anti-vaccination posts.
Chapter 4: Results and Discussion

The vaccine-autism link theme was characterised by conversations associating vaccination with the onset of autism and autism spectrum disorders. The perception that vaccines cause autism is still a common finding even in a recent study [6] despite the claim having been debunked and the original paper [9] being retracted [18].

The theme regarding lack of vaccine effectiveness, showed a general lack of confidence in vaccine efficacy. People commonly questioned the occurrence of vaccine preventable diseases in previously vaccinated individuals. These people often made reference to recent disease outbreaks and cases to justify their hesitancy towards vaccine effectiveness. This sentiment seems to echo that of findings from previous studies where some social media users were of the belief that vaccines actually increase susceptibility to the diseases against which one is vaccinated [6,10]. This has been demonstrated before in a study that tracked the coverage of influenza vaccine, where people questioned why it was necessary to get the vaccine if one could still contract influenza regardless of one’s vaccination status [10].

Conspiracy theories were very common. As with previous studies [13,14] the motives of governments and health regulatory boards were questioned by anti-vaccine sceptics. In this study some users viewed the introduction of vaccines especially to Africa as a form of medical genocide and biological warfare. The intentions of the Bill and Melinda Gates Foundation were questioned. Pharmaceutical companies’ intentions were similarly questioned and the conversations showed a general belief that vaccine manufacturing was primarily a profit making industry.

Although the study provides some insight into public perception concerning vaccination, it exhibited a number of limitations. Firstly, the use of selected social media sites for data collection may exclude groups of the population who do not use these platforms as well as the those who may not have access to internet facilities. The results of the study can therefore not be generalised to the whole population. The study which was also qualitative in nature had descriptive properties and is therefore not able to provide a causal-effect link. Another limitation existed with thematic assignment which could possibly vary according to different interpretation of nuance. In addition, although the data sources were on social media, some posts contained hyperlinks to other non-social media sites. However, sharing these hyperlinks was perceived as agreeing with the contents unless otherwise stated in the caption accompanying the post.
5. **Recommendations and conclusion**

Anti-vaccination sentiments on South African social media platforms present a serious cause for concern. Data from global studies showing a correlation between negative sentiments possibly influencing the decision not to vaccinate, make it especially important to address this growing phenomenon. The South African National Department of Health, faced by resource constraints and health disparities, recognises vaccination as a key public health intervention that is cost-effective and could save millions of lives [19]. Targeted interventions addressing a social media audience are therefore paramount. The viral nature of the internet makes these interventions especially urgent. A large social media presence and visibility of public health groups, answering public concerns about vaccine safety and improving vaccine confidence, are necessary. Special tactics tailor-made for this particular audience may need to be employed for effective dissemination of educational information. The use of eHealth strategies is recommended by the South Africa National Department of Health. mHealth is an example where healthcare providers are encouraged to capitalise on existing mobile technologies to disseminate health promotional information as well as to maintain an active surveillance system for any arising health concern which may appear even on social media networks. Ongoing surveillance of the South African social media landscape is encouraged, and studies investigating the impact of anti-vaccination conversations in the South African context are recommended.

Acknowledgements: The authors thank Mr Neil Burnett for assisting with Pulsar® software and sentiment assignment.

Funding: This project was funded by the National Research Foundation, South Africa.

References

[12] Kata A. Anti-vaccine activists, Web 2.0, and the postmodern paradigm—an overview of tactics and tropes used online by the anti-vaccination movement. Vaccine.
Chapter 4: Results and Discussion

CHAPTER 5
LIMITATIONS, RECOMMENDATIONS AND CONCLUSIONS

5.1 INTRODUCTION

This chapter provides the limitations, recommendations and conclusion of the study.

5.2 LIMITATIONS OF THE STUDY

Although the study provides some insight into public perception concerning vaccination, it exhibited a number of limitations. Firstly, the use of selected social media sites for data collection may exclude groups of the population who do not use these platforms as well as the those who may not have access to internet facilities. The results of the study can therefore not be generalised to the whole population. The study which was also qualitative in nature had descriptive in nature and is therefore not able to provide a causal link. In addition, although the data sources were on social media, some posts contained hyperlinks to other non-social media sites. It is therefore assumed that by sharing these hyperlinks the user was in agreement with the contents, unless otherwise stated in the caption accompanying the post. A similar limitation was also with re-tweets or re-shared posts to which in this study an assumption was made that one re-tweets or re-posts content that they agree with unless they also explicitly provide additional text contrary to this.

5.3 RECOMMENDATIONS

- Capitalise on the existing strongly positive proportion of positive sentiments as seen from the results by augmenting these with educational material on vaccine safety.
- Special tactics tailor-made for this particular audience may need to be employed for effective dissemination of educational information.
- A large social media presence and visibility of public health groups debunking vaccination myths and answering public concerns.
- More emphasis and strategies focused towards re-assuring undecided vaccinators about vaccine benefits and improving vaccine confidence, as opposed to targeting vocal vaccine deniers.
- The use of eHealth strategies as recommended by the South Africa National Department of Health such as mHealth where healthcare providers are encouraged to capitalize on
existing mobile technologies to disseminate health promotional information as well as to maintain an active surveillance system for any arising health concerns which may appear even on social media networks.

- The use of facts coupled with emotional appeals has been seen to be effective in countering the anti-vaccination narrative.

- Ongoing surveillance of the South African social media landscape is encouraged, and studies investigating the impact of anti-vaccination conversations in the South African context are recommended.

5.4 CONCLUSIONS

The results of the study have shown that South Africa is still predominantly pro-vaccination. Twitter, emerged as the social media site of choice for voicing out vaccine related concerns and for this reason could be targeted for dissemination for of vaccine safety information. News agents exhibited large impression and visibility scores and are therefore to be considered as positive vaccine influencers in order to ensure a wider social media audience. The in-depth analysis of the negative vaccine sentiments have demonstrated some public misconceptions about vaccines warranting urgent recourse. The internet is not constrained by geographical location hence the influence of American based anti-vaccination lobbying is not to be ignored. More vigilance and surveillance is therefore of paramount importance.

References

References

Appendices

APPENDICES

Appendix A: SMUREC ethical clearance certificate

[Image of SMUREC ethical clearance certificate]

01 March 2018

Ms NM Matsangale
Department of Pharmacy
F.O Box 218
Medicine
0204

MEETING: 02/2018

SMUREC Ethics Reference Number: SMUREC/P/60/2018: PG

The New Application received on 14 February 2018, was reviewed by members of Sefako Makgatho University Research Ethics Committee on 01 March 2018 and was approved on 01 March 2018.

Title: A profile of vaccination sentiments on online news forums, Twitter, and other microblogs in South Africa

Researcher: Ms MM Matsangale
Supervisor: Prof JC Meyer
Co-supervisor: Prof RJ Burnett
Department: Pharmacy
School: Pharmacy
Degree: M Pharm

Please note the following information about your approved research protocol:

Approval Period: 01 March 2018 – 01 March 2023

After Ethical Review: Kindly remember to use your protocol number (SMUREC/P/60/2018: PG) on any documents or correspondence concerning your research protocol with the REC. The REC has the prerogative and authority to ask further questions, seek additional information, require further modification, or monitor the conduct of your research and the consent process. A template of the progress report is obtainable from the Research Office and is due on an annual basis for your study irrespective of the approval period. Please note that a number of projects may be selected randomly for an external audit every year. Translation of the consent document in the language applicable to the study participants should be submitted if required.

International Organisation (ORGN/0000891), Institutional Review Board (IRB) (020001010988) Expiry date: 05 December 2018, Federal Wide Assurance (FWA00003344) Expiry date: 03 March 2021 and NNREC Ex: NGC 219408-003

Sincerely

PROF C BAKER
DEPUTY CHAIRPERSON SMUREC

Date: 01/03/2018

Research & Postgraduate Studies Directorate
Sefako Makgatho University Research Ethics Committee
(SMUREC)
Appendix B: Vaccine author guidelines

VACCINE

AUTHOR INFORMATION PACK

TABLE OF CONTENTS
- Description p.1
- Audience p.1
- Impact Factor p.1
- Abstracting and Indexing p.2
- Editorial Board p.2
- Guide for Authors p.5

DESCRIPTION

Vaccine is **unique** in publishing the highest quality science across all disciplines relevant to the field of vaccinology - all original article submissions across basic and clinical research, vaccine manufacturing, history, public policy, behavioral science and ethics, social sciences, safety, and many other related areas are welcomed. Our submission **categories** indicate where we receive the most papers. Papers outside these major areas are also welcome and authors are encouraged to contact us with specific questions. We also invite authors to submit relevant basic science and clinical reviews, methodological articles, opinion and commentary pieces, visual pieces, and letters. Authors are required to consult the Guide for Authors as this is a dynamic set of submission guidelines and is therefore subject to change. The Editors retain the right to desk reject submissions without peer review where it is clear that the Guide for Authors and the submission categories have not been consulted.

AUDIENCE

Research workers, product developers, clinicians and practitioners with interests in virology, bacteriology, parasitology, mycology, immunology, genetics, biotechnology and biochemistry in the medical and veterinary fields.

IMPACT FACTOR

2017: 3.285 © Clarivate Analytics Journal Citation Reports 2018
ABSTRACTING AND INDEXING

Current Opinion in Infectious Diseases
Current Contents
SIIC Data Bases
Current AIDS Literature
MEDLINE®
EMBASE
Index Veterinaris
AIDS Information
AIDS
Abstracts on Hygiene and Communicable Diseases
ADONIS
BIOSIS
Biotechnology Abstracts
Chemical Abstracts
Elsevier BIOBASE
Current Opinion in Immunology
Focus on: Veterinary Science and Medicine
Telegen
Tropical Diseases Bulletin
Veterinary Bulletin
Virus Information Exchange Newsletter
Scopus

EDITORIAL BOARD

Editor-in-Chief:
Gregory A. Poland, Rochester, Minnesota, USA

Managing Editor
Sandra Isidean, Quebec, Canada

Reviews Editor:
Kathleen M. Neuzil, Baltimore, Maryland, USA

Basic Science Reviews Editor
Galit Alter, Cambridge, Massachusetts, USA

Transfer Editor Helixon
Florian Kramer, New York, New York, USA
Influenza, Hemagglutinin, Neuraminidase, Stalk, Heterosubtypic Immunity

Associate Editors:
Danny Altman, London, UK
Ray Borrow, Manchester, UK
bacterial vaccines and clinical trials
Robert T. Chen, Atlanta, Georgia, USA
Vaccine Safety & Policy
Anthony R. Fooks, Addlestone, Surrey, UK
Zoonosis and neglected tropical diseases
Bruce Gellin, Washington, USA
Ken Ishii, Osaka, Japan
adjuvant; Flu vaccine; malaria vaccine; DNA vaccine; regulatory science; innate immunity
Steven Jacobsen, Pasadena, California, USA
Epidemiology and clinical trials
Bruce Y. Lee, Baltimore, Maryland, USA
Economics, operations research, logistics, modelling, and policy
Anton Middeleberg, South Australia, Australia
Vaccine engineering and manufacture; nanoparticle vaccines; nanoemulsions
Jennifer Clark Nelson, Seattle, Washington, USA
Study Design, Biostatistical Methods, Vaccine Safety, Vaccine Effectiveness, Surveillance

AUTHOR INFORMATION PACK 8 Nov 2018 www.elsevier.com/locate/vaccine
Appendices

Helena Maltezou, Athens, Greece
Tetsuro Matano, Tokyo, Japan
Janet McElhaney, Farmington, Connecticut, USA
Peter McIntyre, Westmead, New South Wales, Australia
Dennis Metzger, Albany, New York, USA
Mark Miller, Bethesda, Maryland, USA
Anthony Newall, Sydney, New South Wales, Australia
Peter Newman, Toronto, Ontario, Canada
Saad Omer, Atlanta, Georgia, USA
Slobodan Paessler, Galveston, Texas, USA
Peter Palese, New York, New York, USA
Marcela Pasetti, Baltimore, Maryland, USA
Stephen Pelton, Boston, Massachusetts, USA
Michael Pichichero, Rochester, NY, USA
Stanley Plotkin
Maarten Postma, Groningen, Netherlands
Nicola Principi, Milano, Italy
Roman Prymula, Hradec Kralove, Czech Republic
Conrad Quinn, Atlanta, Georgia, USA
Rino Rappuoli
Steven Reed, Seattle, Washington, USA
Guus Rimmelzwaan, Rotterdam, Zuid-Holland, Netherlands
Lance Rodewald, Atlanta, Georgia, USA
Ted Ross, Port Saint Lucie, Florida, USA
Mark Rozenbaum, Groningen, The Netherlands
Xavier Saelens, Gent, Belgium
William Schaffner, Nashville, Tennessee, USA
David Scheifele, Vancouver, British Columbia, Canada
Claire-Anne Siegrist, Geneve, Switzerland
Mark Slifka, Beaverton, Oregon, USA
Kanta Subbarao, Bethesda, Maryland, USA
Andreas Suhrbier, Brisbane, Queensland, Australia
Kelipp Talbot, Nashville, Tennessee, USA
Geraldine Taylor, Newbury, UK
Ralph Tripp, Athens, Georgia, USA
Takafumi Tsuboi, Enline, Japan
Pierre van Damme, Antwerp, Belgium
Bruce G. Weniger
Cynthia Whitney, Atlanta, Georgia, USA
Sabine Wicker, Frankfurt, Germany
Fred Zepp, Mainz, Germany
Qinjian Zhao, Xiamen, Fujian, China
Gregory Zimet, Indianapolis, Indiana, USA
GUIDE FOR AUTHORS

INTRODUCTION

Vaccine is the most comprehensive and pre-eminent journal for those interested in vaccines and vaccination, serving as an interface between academics, those in research and development, regulatory and governmental agencies, charities, and health and industry professionals.

Types of article
Types of paper

Vaccine publishes primary research papers, review articles, short communications and letters on the following topics: Basic Science Review/Clinical Science Review/Commentary/Editorial/History of Vaccinology Human Fungal/Parasite/Other Vaccines Human Non-Infectious Disease Vaccines (cancer, allergy, other) Human Viral Vaccines: Basic Research Letter to the Editor Novel Pathogen Vaccines (Biodetection/High Consequence Pathogens/Emerging Diseases) Vaccine Acceptance/ Hesitancy Vaccine Basic Science (Immunology/Animal Models) Vaccine Ethics Vaccine Manufacturing and Bioprocessing Vaccine Operational Research (Evaluation/Epidemiology/Informatics/Models /Big Data and Analytics) Vaccine Policy Legislation/Economics/Digital Health Vaccine Regulatory Science (Implementation/Guidelines/Public Health) Vaccine Safety Science Vaccine Technology (Vectors/ Adjuvants/Delivery Systems Nanotechnology) Veterinary Bacterial Vaccines Veterinary Fungal/ Parasite Other Vaccines Veterinary Viral Vaccines Visual Vaccinology

For more specifics please go to Article Type - Guidelines

Vaccine also welcomes thoughtful Opinion pieces and similar Commentary on topics of interest to the readership of the journal. Authors proposing such work should contact the Editor Dr Poland via (Vitse.Caroline@mayo.edu). In advance of its preparation to describe the general subject of the article in order for a formal solicitation to be made. Authors who wish to submit a Review article should also seek approval of topic before submission. Please send your enquiry to the Review Editor kneuzil@som.umaryland.edu. However, the resulting submission is still subject to standard peer review, and the solicitation does not guarantee acceptance for publication. Please note that ALL articles must now carry a single sentence before the article’s bibliography stating: ‘All authors attest they meet the ICMJE criteria for authorship’ and all authors must submit written confirmation in their cover letter that “All authors attest they meet the ICMJE criteria for authorship”.

Contact details for submission

Papers should be submitted using the Vaccine online submission system, http://ees.elsevier.com/jvac

10 essentials to ensure fast handling

Manuscript is in accordance with ARTICLE TYPE - GUIDELINES. Manuscript-text is saved as a Word- file, line-numbers are added and text is double spaced. Clinical trial registry is mentioned at the end of the abstract if applicable. Conflict of interest statement is included at the end of the manuscript. Figures and tables are prepared as separate files and are clearly labeled. Cover letter is prepared, introducing your article and explaining the novelty of the research. Keywords are prepared. Contact details of 4-6 suggested reviewers (Name, affiliation, and email address) are prepared. Highlights are prepared (a birds’ eye view of your article in 3-5 points, 85 characters each). The work presented in the article has been carried out in an ethical way.

For any further information please consult this Guide For Authors or visit our customer support site at http://service.elsevier.com

Submission checklist

You can use this list to carry out a final check of your submission before you submit it to the journal for review. Please check the relevant section in this Guide for Authors for more details.

Ensure that the following items are present:

One author has been designated as the corresponding author with contact details:

• E-mail address
• Full postal address

All necessary files have been uploaded:

AUTHOR INFORMATION PACK 8 Nov 2018 www.elsevier.com/locate/vaccine
Appendices

Manuscript:
- Include keywords
- All figures (include relevant captions)
- All tables (including titles, description, footnotes)
- Ensure all figure and table citations in the text match the files provided
- Indicate clearly if color should be used for any figures in print

Graphical Abstracts / Highlights files (where applicable)
Supplemental files (where applicable)

Further considerations:
- Manuscript has been 'spell checked' and 'grammar checked'
- All references mentioned in the Reference List are cited in the text, and vice versa
- Permission has been obtained for use of copyrighted material from other sources (including the Internet)
- A competing interests statement is provided, even if the authors have no competing interests to declare
- Journal policies detailed in this guide have been reviewed
- Referee suggestions and contact details provided, based on journal requirements

For further information, visit our Support Center.

BEFORE YOU BEGIN

Ethics in publishing
Please see our information pages on Ethics in publishing and Ethical guidelines for journal publication.

Studies in humane and animals
If the work involves the use of human subjects, the author should ensure that the work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans. The manuscript should be in line with the Recommendations for the Conduct, Reporting, Editing and Publication of Scholarly Work in Medical Journals and aim for the inclusion of representative human populations (sex, age and ethnicity) as per those recommendations. The terms sex and gender should be used correctly.

Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.

All animal experiments should comply with the ARRIVE guidelines and should be carried out in accordance with the U.K. Animals (Scientific Procedures) Act, 1986 and associated guidelines, EU Directive 2010/63/EU for animal experiments, or the National Institutes of Health guide for the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978) and the authors should clearly indicate in the manuscript that such guidelines have been followed. The sex of animals must be indicated, and where appropriate, the influence (or association) of sex on the results of the study.

Policy and ethics (additional information)

Informed consent
Investigations on human subjects must include a statement indicating that informed consent was obtained after the nature and possible consequences of the studies had been fully explained.

Animal welfare
Authors using experimental animals must state that their care was in accordance with institutional guidelines. For animals subjected to invasive procedures, the anesthetic, analgesic and tranquilizing agents used, as well as the amounts and frequency of administration, must be stated.

Availability of Materials
Publication of an article in Vaccine is taken to imply that the authors are prepared to freely distribute materials used in the published experiments (e.g. antibodies, cell lines) to academic researchers for their own use.
Declaration of interest
All authors must disclose any financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work. Examples of potential competing interests include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding. Authors must disclose any interests in two places: 1. A summary declaration of interest statement in the title page file (if double-blind) or the manuscript file (if single-blind). If there are no interests to declare then please state this: 'Declarations of interest: none'. This summary statement will be ultimately published if the article is accepted. 2. Detailed disclosures as part of a separate Declaration of Interest form, which forms part of the journal's official records. It is important for potential interests to be declared in both places and that the information matches. More information.

Submission declaration and verification
Submission of an article implies that the work described has not been published previously (except in the form of an abstract, a published lecture or academic thesis, see 'Multiple, redundant or concurrent publication' for more information), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright holder. To verify originality, your article may be checked by the originality detection service Crossref Similarity Check.

Preprints
Please note that preprints can be shared anywhere at any time, in line with Elsevier's sharing policy. Sharing your preprints e.g. on a preprint server will not count as prior publication (see 'Multiple, redundant or concurrent publication' for more information).

Use of inclusive language
Inclusive language acknowledges diversity, conveys respect to all people, is sensitive to differences, and promotes equal opportunities. Articles should make no assumptions about the beliefs or commitments of any reader, should contain nothing which might imply that one individual is superior to another on the grounds of race, sex, culture or any other characteristic, and should use inclusive language throughout. Authors should ensure that writing is free from bias, for instance by using ‘he or she’, ‘his/her’ instead of ‘he’ or ‘his’, and by making use of job titles that are free of stereotyping (e.g. ‘chairperson’ instead of ‘chairman’ and ‘flight attendant’ instead of ‘stewardess’).

Contributors
Each author is required to declare his or her individual contribution to the article: all authors must have materially participated in the research and/or article preparation, so roles for all authors should be described. The statement that all authors have approved the final article should be true and included in the disclosure.

Authorship
All authors should have made substantial contributions to all of the following: (1) the conception and design of the study, or acquisition of data, or analysis and interpretation of data, (2) drafting the article or revising it critically for important intellectual content, (3) final approval of the version to be submitted.

Changes to authorship
Authors are expected to consider carefully the list and order of authors before submitting their manuscript and provide the definitive list of authors at the time of the original submission. Any addition, deletion or rearrangement of author names in the authorship list should be made only before the manuscript has been accepted and only if approved by the Journal Editor. To request such a change, the Editor must receive the following from the corresponding author: (a) the reason for the change in author list and (b) written confirmation (e-mail, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed.

Only in exceptional circumstances will the Editor consider the addition, deletion or rearrangement of authors after the manuscript has been accepted. While the Editor considers the request, publication of the manuscript will be suspended. If the manuscript has already been published in an online issue, any requests approved by the Editor will result in a corrigendum.
Appendices

Reporting clinical trials
Randomized controlled trials should be presented according to the CONSORT guidelines. At manuscript submission, authors must provide the CONSORT checklist accompanied by a flow diagram that illustrates the progress of patients through the trial, including recruitment, enrollment, randomization, withdrawal and completion, and a detailed description of the randomization procedure. The CONSORT checklist and template flow diagram are available online.

All scientific communications describing immunogenicity, effectiveness, or efficacy of a human or veterinary vaccine must include the following details: Vaccine characteristics: Vaccine lot number, manufacturer, dosing interval and number of doses, vaccine route of administration, if an injection - the anatomic site of injection, technique for vaccine administration (if by injection, specify needle length), concomitant vaccines administered, cold chain or storage effects if relevant, and a specification of what vaccine antigens and adjuvants were administered. Subject characteristics: Age, race, ethnicity, body mass index or body weight, smoking status, gender, medical/immunologic status, and concomitant drug use.

Statistical and analytical reporting

Author guidelines for statistical and analytical reporting:

AUTHOR GUIDELINES

Statistical and analytical guidelines checklist:

STATISTICAL AND ANALYTICAL GUIDELINES CHECKLIST

Registration of clinical trials
Registration in a public trials registry is a condition for publication of clinical trials in this journal in accordance with International Committee of Medical Journal Editors recommendations. Trials must register at or before the onset of patient enrolment. The clinical trial registration number should be included at the end of the abstract of the article. A clinical trial is defined as any research study that prospectively assigns human participants or groups of humans to one or more health-related interventions to evaluate the effects of health outcomes. Health-related interventions include any intervention used to modify a biomedical or health-related outcome (for example drugs, surgical procedures, devices, behavioural treatments, dietary interventions, and process-of-care changes). Health outcomes include any biomedical or health-related measures obtained in patients or participants, including pharmacokinetic measures and adverse events. Purely observational studies (those in which the assignment of the medical intervention is not at the discretion of the investigator) will not require registration.

Article transfer service
This journal is part of our Article Transfer Service. This means that if the Editor feels your article is more suitable in one of our other participating journals, then you may be asked to consider transferring the article to one of those. If you agree, your article will be transferred automatically on your behalf with no need to reformat. Please note that your article will be reviewed again by the new journal. More information.

Copyright
Upon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (see more information on this). An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Journal Publishing Agreement' form or a link to the online version of this agreement.

Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations. If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases.

For gold open access articles: Upon acceptance of an article, authors will be asked to complete an 'Exclusive License Agreement' (more information). Permitted third party reuse of gold open access articles is determined by the author's choice of user license.

AUTHOR INFORMATION PACK 8 Nov 2018 www.elsevier.com/locate/vaccine
Author rights
As an author you (or your employer or institution) have certain rights to reuse your work. More information.

Elsevier supports responsible sharing
Find out how you can share your research published in Elsevier journals.

Role of the funding source
You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated.

Funding body agreements and policies
Elsevier has established a number of agreements with funding bodies which allow authors to comply with their funder’s open access policies. Some funding bodies will reimburse the author for the gold open access publication fee. Details of existing agreements are available online.

Open access
This journal offers authors a choice in publishing their research:

Subscription
- Articles are made available to subscribers as well as developing countries and patient groups through our universal access programs.
- No open access publication fee payable by authors.
- The Author is entitled to post the accepted manuscript in their institution’s repository and make this public after an embargo period (known as green Open Access). The published journal article cannot be shared publicly, for example on ResearchGate or Academia.edu, to ensure the sustainability of peer-reviewed research in journal publications. The embargo period for this journal can be found below.

Gold open access
- Articles are freely available to both subscribers and the wider public with permitted reuse.
- A gold open access publication fee is payable by authors or on their behalf, e.g. by their research funder or institution.

Regardless of how you choose to publish your article, the journal will apply the same peer review criteria and acceptance standards.

For gold open access articles, permitted third party (re)use is defined by the following Creative Commons user licenses:

Creative Commons Attribution (CC BY)
Lets others distribute and copy the article, create extracts, abstracts, and other revised versions, adaptations or derivative works of or from an article (such as a translation), include in a collective work (such as an anthology), text or data mine the article, even for commercial purposes, as long as they credit the author(s), do not represent the author as endorsing their adaptation of the article, and do not modify the article in such a way as to damage the author’s honor or reputation.

Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)
For non-commercial purposes, let others distribute and copy the article, and to include in a collective work (such as an anthology), as long as they credit the author(s) and provided they do not alter or modify the article.

The gold open access publication fee for this journal is USD 2450, excluding taxes. Learn more about Elsevier’s pricing policy: https://www.elsevier.com/openaccesspricing.

Green open access
Authors can share their research in a variety of different ways and Elsevier has a number of green open access options available. We recommend authors see our green open access page for further information. Authors can also self-archive their manuscripts immediately and enable public access from their institution’s repository after an embargo period. This is the version that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and in editor-author communications. Embargo period: For subscription
articles, an appropriate amount of time is needed for journals to deliver value to subscribing customers before an article becomes freely available to the public. This is the embargo period and it begins from the date the article is formally published online in its final and fully citable form. Find out more.

This journal has an embargo period of 12 months.

Language (usage and editing services)
Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the English Language Editing service available from Elsevier’s WebShop.

Informed consent and patient details
Studies on patients or volunteers require ethics committee approval and informed consent, which should be documented in the paper. Appropriate consents, permissions and releases must be obtained where an author wishes to include case details or other personal information or images of patients and any other individuals in an Elsevier publication. Written consents must be retained by the author but copies should not be provided to the journal. Only if specifically requested by the journal in exceptional circumstances (for example if a legal issue arises) the author must provide copies of the consents or evidence that such consents have been obtained. For more information, please review the Elsevier Policy on the Use of Images or Personal Information of Patients or other Individuals. Unless you have written permission from the patient (or, where applicable, the next of kin), the personal details of any patient included in any part of the article and in any supplementary materials (including all illustrations and videos) must be removed before submission.

Submission
Our online submission system guides you stepwise through the process of entering your article details and uploading your files. The system converts your article files to a single PDF file used in the peer-review process. Editable files (e.g., Word, LaTeX) are required to typeset your article for final publication. All correspondence, including notification of the Editor’s decision and requests for revision, is sent by e-mail.

Submit your article
Please submit your article via http://ees.elsevier.com/jvac

Referees
Suggestions for potential reviewers
Authors are invited to provide the names, and e-mail addresses of up to five potential reviewers. It would not be appropriate to nominate individuals that have had any input into the manuscripts submitted or any recent collaboration with the authors. The Editors may or may not take these suggestions into account during the reviewing process.

Review process
All contributions are read by two or more referees to ensure both accuracy and relevance, and revisions to the script may thus be required. On acceptance, contributions are subject to editorial amendment to suit house style. When a manuscript is returned for revision prior to final acceptance, the revised version must be submitted as soon as possible after the author’s receipt of the referee’s reports. Revised manuscripts returned after four months will be considered as new submissions subject to full re-review.

PREPARATION
Peer review
This journal operates a single blind review process. All contributions will be initially assessed by the editor for suitability for the journal. Papers deemed suitable are then typically sent to a minimum of two independent expert reviewers to assess the scientific quality of the paper. The Editor is responsible for the final decision regarding acceptance or rejection of articles. The Editor’s decision is final. More information on types of peer review.

Use of wordprocessing software
It is important that the file be saved in the native format of the wordprocessor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the wordprocessor’s options to justify text or to hyphenate words. However, do use bold face, italics, subscripts,
superscripts etc. When preparing tables, if you are using a table grid, use only one grid for each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier: http://www.elsevier.com/guidepublication). Note that source files of figures, tables and text graphics will be required whether or not you embed your figures in the text. Source files must have "consecutive" line numbering added by authors (this must include tables, captions, references). See also the section on Electronic artwork.

To avoid unnecessary errors you are strongly advised to use the 'spell-check' and 'grammar-check' functions of your wordprocessor.

Introduction
State the objectives of the work and provide an adequate background, avoiding a detailed literature survey or a summary of the results.

Material and methods
Provide sufficient detail to allow the work to be reproduced, with details of supplier and catalogue number when appropriate. Methods already published should be indicated by a reference: only relevant modifications should be described.

Results
Results should be clear and concise.

Discussion
This should explore the significance of the results of the work, not repeat them. A combined Results and Discussion section is often appropriate. Avoid extensive citations and discussion of published literature.

Conclusions
The main conclusions of the study may be presented in a short Conclusions section, which may stand alone or form a subsection of a Discussion or Results and Discussion section.

Essential title page information
- Title. Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.
- Author names and affiliations. Please clearly indicate the given name(s) and family name(s) of each author and check that all names are accurately spelled. You can add your name between parentheses in your own script behind the English transliteration. Present the authors' affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author's name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and, if available, the e-mail address of each author;
- Corresponding author. Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. This responsibility includes answering any future queries about Methodology and Materials. Ensure that the e-mail address is given and that contact details are kept up to date by the corresponding author;
- Present/permanent address. If an author has moved since the work described in the article was done, or was visiting at the time, a 'Present address' (or 'Permanent address') may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.

Abstract
A concise and factual abstract is required. The abstract should state briefly the purpose of the research, the principal results and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. For this reason, References should be avoided, but if essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself.

Graphical abstract
Although a graphical abstract is optional, its use is encouraged as it draws more attention to the online article. The graphical abstract should summarize the contents of the article in a concise, pictorial form designed to capture the attention of a wide readership. Graphical abstracts should be submitted as a separate file in the online submission system. Image size: Please provide an image with a minimum
Appendices

of 531 × 1328 pixels (h × w) or proportionally more. The image should be readable at a size of 5 × 13 cm using a regular screen resolution of 96 dpi. Preferred file types: TIFF, EPS, PDF or MS Office files. You can view Example Graphical Abstracts on our information site. Authors can make use of Elsevier's Illustration Services to ensure the best presentation of their images and in accordance with all technical requirements.

Highlights
Highlights are a short collection of bullet points that convey the core findings of the article. Highlights are optional and should be submitted in a separate editable file in the online submission system. Please use 'Highlights' in the file name and include 3 to 5 bullet points (maximum 85 characters, including spaces, per bullet point). You can view example Highlights on our information site.

Stereochimistry abstract
For each important chiral compound you are requested to supply a stereochimistry abstract detailing structure, name, formula and all available stereochimical information for eventual incorporation into a database. An abstract for only one enantiomer per compound is required.

Keywords
Immediately after the abstract, provide a maximum of 6 keywords, using British spelling and avoiding general and plural terms and multiple concepts (avoid, for example, 'and', 'of'). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

Abbreviations
Define abbreviations that are not standard in this field in a footnote to be placed on the first page of the article. Such abbreviations that are unavoidable in the abstract must be defined at their first mention there, as well as in the footnote. Ensure consistency of abbreviations throughout the article.

Acknowledgements
Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.).

Formatting of funding sources
List funding sources in this standard way to facilitate compliance to funder's requirements:

Funding: This work was supported by the National Institutes of Health [grant numbers xxxx, yyyy]; the Bill & Melinda Gates Foundation, Seattle, WA [grant number zzzz]; and the United States Institutes of Peace [grant number aaaa].

It is not necessary to include detailed descriptions on the program or type of grants and awards. When funding is from a block grant or other resources available to a university, college, or other research institution, submit the name of the institute or organization that provided the funding.

If no funding has been provided for the research, please include the following sentence:

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Units
Follow internationally accepted rules and conventions: use the international system of units (SI). If other units are mentioned, please give their equivalent in SI.

Math formulae
Please submit math equations as editable text and not as images. Present simple formulae in line with normal text where possible and use the solidus (/) instead of a horizontal line for small fractional terms, e.g., X/Y. In principle, variables are to be presented in italics. Powers of e are often more conveniently denoted by exp. Number consecutively any equations that have to be displayed separately from the text (if referred to explicitly in the text).
Footnotes
Footnotes should be used sparingly. Number them consecutively throughout the article. Many word processors can build footnotes into the text, and this feature may be used. Otherwise, please indicate the position of footnotes in the text and list the footnotes themselves separately at the end of the article. Do not include footnotes in the Reference list.

Artwork
Electronic artwork
General points
• Make sure you use uniform lettering and sizing of your original artwork.
• Embed the used fonts if the application provides that option.
• Aim to use the following fonts in your illustrations: Arial, Courier, Times New Roman, Symbol, or use fonts that look similar.
• Number the illustrations according to their sequence in the text.
• Use a logical naming convention for your artwork files.
• Provide captions to illustrations separately.
• Size the illustrations close to the desired dimensions of the published version.
• Submit each illustration as a separate file.
A detailed guide on electronic artwork is available.

You are urged to visit this site; some excerpts from the detailed information are given here.

Formats
If your electronic artwork is created in a Microsoft Office application (Word, PowerPoint, Excel) then please supply ‘as is’ in the native document format. Regardless of the application used other than Microsoft Office, when your electronic artwork is finalized, please ‘Save as’ or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):
EPS (or PDF): Vector drawings, embed all used fonts.
TIFF (or JPEG): Color or grayscale photographs (halftones), keep to a minimum of 300 dpi.
TIFF (or JPEG): Bitmapped (pure black & white pixels) line drawings, keep to a minimum of 1000 dpi.
TIFF (or JPEG): Combinations bitmapped line/halftone (color or grayscale), keep to a minimum of 500 dpi.

Please do not:
• Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); these typically have a low number of pixels and limited set of colors;
• Supply files that are too low in resolution;
• Submit graphics that are disproportionately large for the content.

Color artwork
Please make sure that artwork files are in an acceptable format (TIFF or JPEG), EPS (or PDF), or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color online (e.g., ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced in color in the printed version. For color reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article. Please indicate your preference for color: in print or online only. Further information on the preparation of electronic artwork.

Figure captions
Ensure that each illustration has a caption. Supply captions separately, not attached to the figure. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Tables
Please submit tables as editable text and not as images. Tables can be placed either next to the relevant text in the article, or on separate page(s) at the end. Number tables consecutively in accordance with their appearance in the text and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article. Please avoid using vertical rules and shading in table cells.

References
Appendices

Citation in text
Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either 'Unpublished results' or 'Personal communication'. Citation of a reference as 'in press' implies that the item has been accepted for publication.

Reference links
Increased discoverability of research and high quality peer review are ensured by online links to the sources cited. In order to allow us to create links to abstracting and indexing services, such as Scopus, CrossRef and PubMed, please ensure that data provided in the references are correct. Please note that incorrect surnames, journal/book titles, publication year and pagination may prevent link creation. When copying references, please be careful as they may already contain errors. Use of the DOI is highly encouraged.

A DOI is guaranteed never to change, so you can use it as a permanent link to any electronic article. An example of a citation using DOI for an article not yet in an issue is: VanDecar J.C., Russo R.M., James D.E., Ambhe W.B., Franke M. (2003). Aseismic continuation of the Lesser Antilles slab beneath northeastern Venezuela. Journal of Geophysical Research, https://doi.org/10.1029/2001JB000884. Please note the format of such citations should be in the same style as all other references in the paper.

Web references
As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.

Data references
This journal encourages you to cite underlying or relevant datasets in your manuscript by citing them in your text and including a data reference in your Reference List. Data references should include the following elements: author name(s), dataset title, data repository, version (where available), year, and global persistent identifier. Add [dataset] immediately before the reference so we can properly identify it as a data reference. The [dataset] identifier will not appear in your published article.

Reference management software
Most Elsevier journals have their reference template available in many of the most popular reference management software products. These include all products that support Citation Style Language styles, such as Mendeley and Zotero, as well as EndNote. Using the word processor plug-ins from these products, authors only need to select the appropriate journal template when preparing their article, after which citations and bibliographies will be automatically formatted in the journal’s style. If no template is yet available for this journal, please follow the format of the sample references and citations as shown in this Guide. If you use reference management software, please ensure that you remove all field codes before submitting the electronic manuscript. More information on how to remove field codes.

Users of Mendeley Desktop can easily install the reference style for this journal by clicking the following link:
http://open.mendeley.com/use-citation-style/vaccine

When preparing your manuscript, you will then be able to select this style using the Mendeley plug-ins for Microsoft Word or LibreOffice.

Reference formatting
There are no strict requirements on reference formatting at submission. References can be in any style or format as long as the style is consistent. Where applicable, author(s) name(s), journal title/book title, chapter title/article title, year of publication, volume number/book chapter and the article number or pagination must be present. Use of DOI is highly encouraged. The reference style used by the journal will be applied to the accepted article by Elsevier at the proof stage. Note that missing data will be highlighted at proof stage for the author to correct. If you do wish to format the references yourself they should be arranged according to the following examples:
Reference style
Text: Indicate references by number(s) in square brackets in line with the text. The actual authors can be referred to, but the reference number(s) must always be given.
List: Number the references (numbers in square brackets) in the list in the order in which they appear in the text.
Examples:
Reference to a journal publication:
Reference to a journal publication with an article number:
Reference to a book:
Reference to a chapter in an edited book:
Reference to a website:
Reference to a dataset:
Note shortened form for last page number, e.g., 51–9, and that for more than 6 authors the first 6 should be listed followed by 'et al.' For further details you are referred to 'Uniform Requirements for Manuscripts submitted to Biomedical Journals' (J Am Med Assoc 1997;277:927–34) (see also Samples of Formatted References).
Journal abbreviations source
Journal names should be abbreviated according to the List of Title Word Abbreviations.
Supplementary material
Supplementary material such as applications, images and sound clips, can be published with your article to enhance it. Submitted supplementary items are published exactly as they are received (Excel or PowerPoint files will appear as such online). Please submit your material together with the article and supply a concise, descriptive caption for each supplementary file. If you wish to make changes to supplementary material during any stage of the process, please make sure to provide an updated file. Do not annotate any corrections on a previous version. Please switch off the 'Track Changes' option in Microsoft Office files as these will appear in the published version.
Supplementary material captions
Each supplementary material file should have a short caption which will be placed at the bottom of the article, where it can assist the reader and also be used by search engines.
Research data
This journal encourages and enables you to share data that supports your research publication where appropriate, and enables you to interlink the data with your published articles. Research data refers to the results of observations or experimentation that validate research findings. To facilitate reproducibility and data reuse, this journal also encourages you to share your software, code, models, algorithms, protocols, methods and other useful materials related to the project.

Below are a number of ways in which you can associate data with your article or make a statement about the availability of your data when submitting your manuscript. If you are sharing data in one of these ways, you are encouraged to cite the data in your manuscript and reference list. Please refer to the "References" section for more information about data citation. For more information on depositing, sharing and using research data and other relevant research materials, visit the research data page.
Data linking
If you have made your research data available in a data repository, you can link your article directly to the dataset. Elsevier collaborates with a number of repositories to link articles on ScienceDirect with relevant repositories, giving readers access to underlying data that gives them a better understanding of the research described.

AUTHOR INFORMATION PACK 8 Nov 2018
www.elsevier.com/locate/vaccine
There are different ways to link your datasets to your article. When available, you can directly link your dataset to your article by providing the relevant information in the submission system. For more information, visit the database linking page.

For supported data repositories a repository banner will automatically appear next to your published article on ScienceDirect.

In addition, you can link to relevant data or entities through identifiers within the text of your manuscript, using the following format: Database: xxxx (e.g., TAIR: AT1G01020; CCDC: 734053; PDB: 1XFN).

Mendeley Data
This journal supports Mendeley Data, enabling you to deposit any research data (including raw and processed data, video, code, software, algorithms, protocols, and methods) associated with your manuscript in a free-to-use, open access repository. During the submission process, after uploading your manuscript, you will have the opportunity to upload your relevant datasets directly to Mendeley Data. The datasets will be listed and directly accessible to readers next to your published article online.

For more information, visit the Mendeley Data for journals page.

Data statement
To foster transparency, we encourage you to state the availability of your data in your submission. This may be a requirement of your funding body or institution. If your data is unavailable to access or unsuitable to post, you will have the opportunity to indicate why during the submission process, for example by stating that the research data is confidential. The statement will appear with your published article on ScienceDirect. For more information, visit the Data Statement page.

AFTER ACCEPTANCE

News and embargoes
If you think your article would be interesting for a wider audience, we would be happy to hear from you. Please contact the Journal Manager, John Bailey (jd.bailey@elsevier.com) and we'll send you an information form to complete. You must inform the Journal Manager if you are planning publicity for your article through your institution or funding body. Any publicity materials must be approved by Elsevier before release, and must not be distributed before the article has been published.

Uncorrected proofs of articles are published online on ScienceDirect as soon as they are available. As such, information about embargoes is not available. Authors can track the status of their article via the Track Your Accepted Article service. Uncorrected articles are normally available online within two working days of you receiving the email to download the proofs.

Online proof correction
Corresponding authors will receive an e-mail with a link to our online proofing system, allowing annotation and correction of proofs online. The environment is similar to MS Word: in addition to editing text, you can also comment on figures/tables and answer questions from the Copy Editor. Web-based proofing provides a faster and less error-prone process by allowing you to directly type your corrections, eliminating the potential introduction of errors.

If preferred, you can still choose to annotate and upload your edits on the PDF version. All instructions for proofing will be given in the e-mail we send to authors, including alternative methods to the online version and PDF.

We will do everything possible to get your article published quickly and accurately. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. It is important to ensure that all corrections are sent back to us in one communication. Please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility.

Offprints
The corresponding author will, at no cost, receive a customized Share Link providing 50 days free access to the final published version of the article on ScienceDirect. The Share Link can be used for sharing the article via any communication channel, including email and social media. For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is
accepted for publication. Both corresponding and co-authors may order offprints at any time via Elsevier's Webshop. Corresponding authors who have published their article gold open access do not receive a Share Link as their final published version of the article is available open access on ScienceDirect and can be shared through the article DOI link.

AUTHOR INQUIRIES

Visit the Elsevier Support Center to find the answers you need. Here you will find everything from Frequently Asked Questions to ways to get in touch. You can also check the status of your submitted article or find out when your accepted article will be published.

© Copyright 2018 Elsevier | https://www.elsevier.com